

Specifications Guide

Agilent Technologies MXA Signal Analyzer

This manual provides documentation for the following instruments:

N9020A

Option 503 (20 Hz – 3.6 GHz)

Option 508 (20 Hz – 8.4 GHz)

Option 513 (20 Hz – 13.6 GHz)

Option 526 (20 Hz – 26.5 GHz)

Agilent Technologies

Manufacturing Part Numbers: [N9020-90004](#)

**Printed in USA
October 2006**

© Copyright 2006 Agilent Technologies, Inc.

The information in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material, including but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Warranty

This Agilent Technologies instrument product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Agilent Technologies will, at its option, either repair or replace products that prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Agilent Technologies. Buyer shall prepay shipping charges to Agilent Technologies and Agilent Technologies shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping charges, duties, and taxes for products returned to Agilent Technologies from another country.

Agilent Technologies warrants that its software and firmware designated by Agilent Technologies for use with an instrument will execute its programming instructions when properly installed on that instrument. Agilent Technologies does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error-free.

Limitation of Warranty

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. AGILENT TECHNOLOGIES SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Exclusive Remedies

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. AGILENT TECHNOLOGIES SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY.

Where to Find the Latest Information

Documentation is updated periodically. For the latest information about Agilent MXA Signal Analyzers, including firmware upgrades and application information, see:

www.agilent.com/find/mxa

Table of Contents

1 Agilent MXA Signal Analyzer	8
Definitions and Requirements	9
Definitions	9
Conditions Required to Meet Specifications	9
Certification.....	9
Frequency and Time	10
Frequency Range	10
Standard Frequency Reference	11
Precision Frequency Reference (<i>Option PFR</i>)	12
Frequency Readout Accuracy.....	13
Frequency Counter.....	14
Frequency Span.....	14
Sweep Time	15
Nominal Measurement Time vs. Span [Plot].....	16
Number of Frequency Display Trace Points (buckets).....	16
Resolution Bandwidth (RBW)	17
Analysis Bandwidth	18
Video Bandwidth (VBW)	18
Amplitude Accuracy and Range.....	19
Measurement Range	19
Maximum Safe Input Level	19
Display Range.....	20
Marker Readout	20
Frequency Response	21
Frequency Response	21
Nominal Frequency Response Band 0 [Plot].....	22
IF Frequency Response	23
Input Attenuation Switching Uncertainty	24
Absolute Amplitude Accuracy	25
RF Input VSWR.....	26
Nominal VSWR [Plot]	27
Resolution Bandwidth Switching Uncertainty.....	28
Reference Level	28
Display Scale Switching Uncertainty	29
Display Scale Fidelity	30
Available Detectors	32
Dynamic Range	33

Gain Compression	33
Displayed Average Noise Level.....	35
Spurious Responses.....	36
Second Harmonic Distortion	37
Third Order Intermodulation Distortion	38
Nominal TOI vs. Mixer Level and Tone Separation [Plot]	39
Nominal Dynamic Range at 1 GHz [Plot].....	40
Nominal Dynamic Range Bands 1-4 [Plot]	41
Nominal Dynamic Range vs. Offset Frequency vs. RBW [Plot].....	42
Phase Noise	43
Nominal Phase Noise of Different LO Optimizations [Plot].....	44
Nominal Phase Noise at Different Center Frequencies [Plot].....	45
Power Suite Measurements	46
Channel Power	46
Occupied Bandwidth	46
Adjacent Channel Power (ACP)	47
Fast ACPR Test [Plot].....	51
Multi-Carrier Adjacent Channel Power	52
Power Statistics CCDF.....	53
Burst Power.....	53
Spurious Emissions	54
Spectrum Emission Mask	55
Options	56
General.....	57
Calibration Cycle.....	57
Temperature Range.....	57
Altitude.....	57
Environmental and Military Specifications.....	57
EMC.....	57
Safety	58
Power Requirements	58
Measurement Speed	59
Display.....	59
Data Storage.....	60
Weight.....	60
Cabinet Dimensions	60
Inputs/Outputs.....	61
Front Panel.....	61
RF Input.....	61

Probe Power	61
USB 2.0 Ports.....	61
Headphone Jack.....	61
Rear Panel	62
10 MHz Out.....	62
Ext Ref In.....	62
Sync	62
Trigger Inputs	62
Trigger Outputs	63
Monitor Output.....	63
Noise Source Drive +28 V (Pulsed).....	63
SNS Series Noise Source	63
Digital Bus	63
Analog Out	63
USB 2.0 Ports.....	64
GPIB Interface	64
LAN TCP/IP Interface	64
Regulatory Information	65
Declaration of Conformity.....	65
2 Option B25 – Analysis Bandwidth, 25 MHz.....	66
Specifications Affected by Analysis Bandwidth	67
3 Option EA3 – Electronic Attenuator, 3.6 GHz	68
Specifications Affected by Electronic Attenuator.....	69
Other Electronic Attenuator Specifications	70
Range (Frequency and Attenuation).....	70
Distortions and Noise.....	71
Frequency Response.....	72
Electronic Attenuator Switching Uncertainty.....	72
4 Options P03, P08, P13 and P26 - Preamplifiers.....	73
Specifications Affected by Preamp	74
Other Preamp Specifications	75
Preamp (<i>Options P03, P08, P13, P26</i>).....	75
1 dB Gain Compression Point (Two-tone).....	76
Displayed Average Noise Level (DANL) – Preamp On (<i>Options P03, P08, P13, P26</i>) ..	77
Frequency Response – Preamp On (<i>Options P03, P08, P13, P26</i>)	78
Nominal VSWR – Preamp On (Plot).....	79
Second Harmonic Distortion	80
Third Order Intermodulation Distortion	80

Nominal Dynamic Range at 1 GHz, Preamp On (Plot)	81
5 Option PFR – Precision Frequency Reference	82
Specifications Affected by Precision Frequency Reference	83
6 802.16 OFDMA Measurement Application	84
Additional Definitions and Requirements	85
Amplitude	86
Channel Power	86
Power Statistics CCDF	86
Spurious Emissions	87
Modulation Analysis	87
Frequency	87
In-Band Frequency Range	87
7 I/Q Analyzer	88
Specifications Affected by I/Q Analyzer	89
Other I/Q Analyzer Specifications	90
Frequency	90
Frequency Range	90
Frequency Span	90
Resolution Bandwidth	90
Analysis Bandwidth (Span)	90
Clipping-to-Noise Dynamic Range	91
IF Spurious Response	92
Amplitude and Phase	93
IF Amplitude Flatness	93
IF Phase Linearity	93
Data Acquisition	93
8 W-CDMA Measurement Application	94
Additional Definitions and Requirements	95
Conformance with 3GPP TS 25.141 Base Station Requirements	96
Amplitude	98
Channel Power	98
Adjacent Channel Power (ACPR; ACLR)	99
Power Statistics CCDF	103
Occupied Bandwidth	103
Spectrum Emission Mask	103
Spurious Emissions	104
Code Domain	105
QPSK EVM	106

Modulation Accuracy (Composite EVM) BTS Measurements.....	107
Power Control.....	108
Frequency.....	108
In-Band Frequency Range	108

1 Agilent MXA Signal Analyzer

This chapter contains the specifications for the core signal analyzer. The specifications and characteristics for the measurement applications and options are covered in the chapters that follow.

Definitions and Requirements

This book contains specifications and supplemental information for the Agilent MXA Signal Analyzer. The distinction among specifications, typical performance, and nominal values are described as follows.

Definitions

- Specifications describe the performance of parameters covered by the product warranty (temperature = 5 to 50 °C, unless otherwise noted).
- 95th percentile values indicate the breadth of the population ($\approx 2\sigma$) of performance tolerances expected to be met in 95 % of the cases with a 95 % confidence, for any ambient temperature in the range of 20 to 30 °C. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.
- Typical describes additional product performance information that is not covered by the product warranty. It is performance beyond specification that 80 % of the units exhibit with a 95 % confidence level over the temperature range 20 to 30 °C. Typical performance does not include measurement uncertainty.
- Nominal values indicate expected performance, or describe product performance that is useful in the application of the product, but is not covered by the product warranty.

The following conditions must be met for the analyzer to meet its specifications.

Conditions Required to Meet Specifications

- The analyzer is within its calibration cycle. See the General section of this chapter.
- Under auto couple control, except that Auto Sweep Time Rules = Accy.
- For signal frequencies < 20 MHz, DC coupling applied.
- Any analyzer that has been stored at a temperature range inside the allowed storage range but outside the allowed operating range must be stored at an ambient temperature within the allowed operating range for at least two hours before being turned on.
- The analyzer has been turned on at least 30 minutes with Auto Align set to Normal, or if Auto Align is set to Off or Partial, alignments must have been run recently enough to prevent an Alert message. If the Alert condition is changed from “Time and Temperature” to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user.

Certification

Agilent Technologies certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technologies further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Technology, to the extent allowed by the Institute's calibration facility, and to the calibration facilities of other International Standards Organization members.

Frequency and Time

Description	Specifications		Supplemental Information
Frequency Range			
Maximum Frequency			
<i>Option 503</i>	3.6 GHz		
<i>Option 508</i>	8.4 GHz		
<i>Option 513</i>	13.6 GHz		
<i>Option 526</i>	26.5 GHz		
<i>Preamp Option P03</i>	3.6 GHz		
<i>Preamp Option P08</i>	8.4 GHz		
<i>Preamp Option P13</i>	13.6 GHz		
<i>Preamp Option P26</i>	26.5 GHz		
Minimum Frequency			
Preamp	AC Coupled	DC Coupled	
Off	10 MHz	20 Hz	
On	10 MHz	100 kHz	
	Harmonic Mixing Mode	LO Multiple (N^a)	
Band			
0 (20 Hz to 3.6 GHz)	1–	1	<i>Options 503, 508, 513, 526</i>
1 (3.5 GHz to 8.4 GHz)	1–	1	<i>Options 508, 513, 526</i>
2 (8.3 GHz to 13.6 GHz)	1–	2	<i>Options 513, 526</i>
3 (13.5 GHz to 17.1 GHz)	2–	2	<i>Option 526</i>
4 (17 GHz to 26.5 GHz)	2–	4	<i>Option 526</i>

a. N is the LO multiplication factor. For negative mixing modes (as indicated by the “–” in the “Harmonic Mixing Mode” column), the desired 1st LO harmonic is higher than the tuned frequency by the 1st IF (5.1225 GHz for band 0, 322.5 MHz for all other bands).

Description	Specifications	Supplemental Information
Standard Frequency Reference <p>Accuracy</p> <p>Temperature Stability</p> <p>20 to 30 °C</p> <p>5 to 50 °C</p> <p>Aging Rate</p> <p>Achievable Initial Calibration Accuracy</p> <p>Settability</p> <p>Residual FM</p> <p>Center Frequency = 1 GHz</p> <p>10 Hz RBW, 10 Hz VBW</p>	$\pm[(\text{time since last adjustment} \times \text{aging rate}) + \text{temperature stability} + \text{calibration accuracy}^{\text{a}}]$ <p>$\pm 2 \times 10^{-6}$</p> <p>$\pm 2 \times 10^{-6}$</p> <p>$\pm 1 \times 10^{-6}/\text{year}^{\text{b}}$</p> <p>$\pm 1.4 \times 10^{-6}$</p> <p>$\pm 2 \times 10^{-8}$</p>	<p>$\leq 10 \text{ Hz} * N \text{ p-p in 20 ms}^{\text{c}}$, nominal</p>

a. Calibration accuracy depends on how accurately the frequency standard was adjusted to 10 MHz. If the calibration procedure is followed, the calibration accuracy is given by the specification “Achievable Initial Calibration Accuracy.”

b. For periods of one year or more.

c. N is the LO multiple.

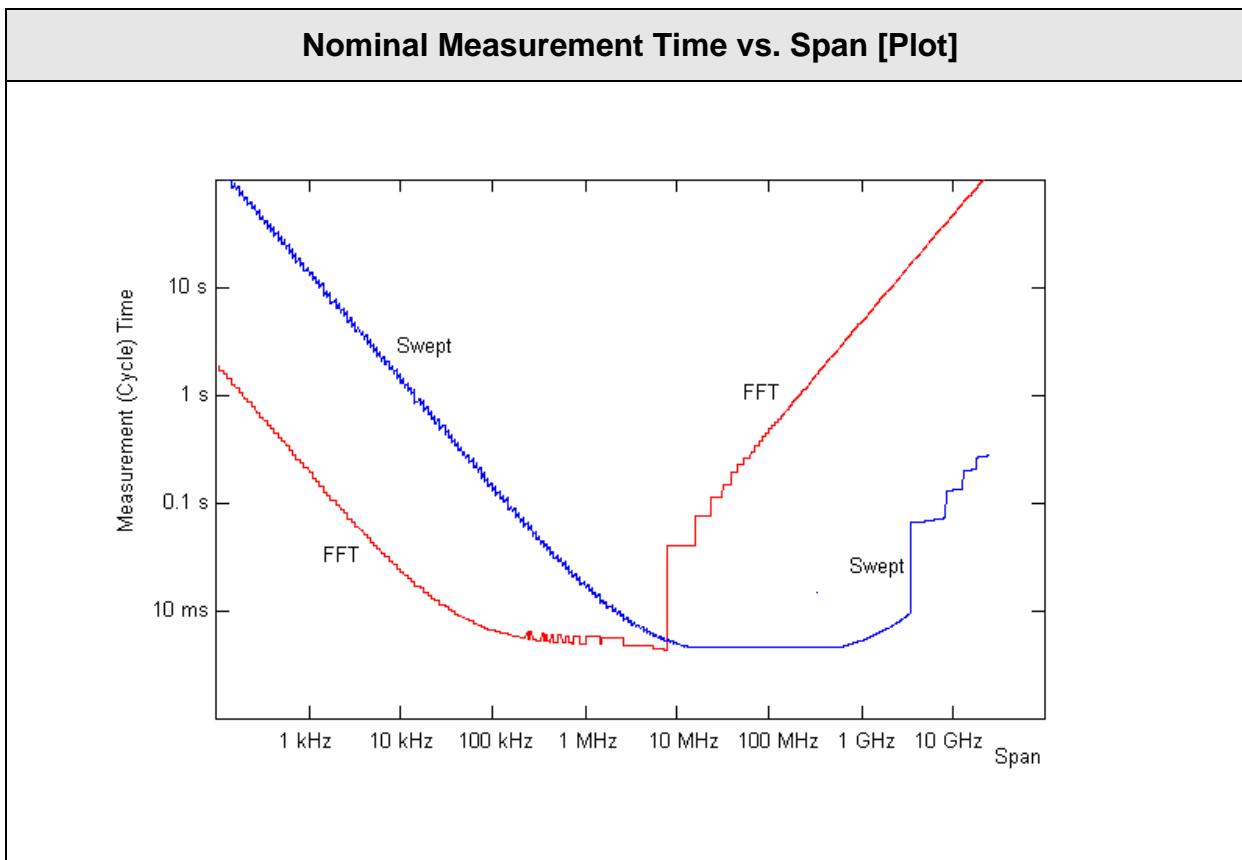
Description	Specifications	Supplemental Information
Precision Frequency Reference (Option PFR)		
Accuracy	$\pm[(\text{time since last adjustment} \times \text{aging rate}) + \text{temperature stability} + \text{calibration accuracy}]^b$	
Temperature Stability	$\pm 1.5 \times 10^{-8}$	
20 to 30 °C	$\pm 5 \times 10^{-8}$	
5 to 50 °C		
Aging Rate		$\pm 5 \times 10^{-10}/\text{day}$ (nominal)
Total Aging		
1 Year	$\pm 1 \times 10^{-7}$	
2 Years	$\pm 1.5 \times 10^{-7}$	
Settability	$\pm 2 \times 10^{-9}$	
Warm-up and Retrace ^c		
300 s after turn on		$\pm 1 \times 10^{-7}$ of final frequency (nominal)
900 s after turn on		$\pm 1 \times 10^{-8}$ of final frequency (nominal)
Achievable Initial Calibration Accuracy ^d	$\pm 4 \times 10^{-8}$	
Standby power to reference oscillator		Not supplied
Residual FM		
Center Frequency = 1 GHz		$\leq 0.25 \text{ Hz} \times N \text{ p-p}$ in 20 ms ^e
10 Hz RBW, 10 Hz VBW		(nominal)

- a. Calibration accuracy depends on how accurately the frequency standard was adjusted to 10 MHz. If the calibration procedure is followed, the calibration accuracy is given by the specification “Achievable Initial Calibration Accuracy.”
- b. The specification applies after the analyzer has been powered on for four hours.
- c. Standby mode does not apply power to the oscillator. Therefore warm-up applies every time the power is turned on. The warm-up reference is one hour after turning the power on. Retracing also occurs every time the power is applied. The effect of retracing is included within the “Achievable Initial Calibration Accuracy” term of the Accuracy equation.
- d. The achievable calibration accuracy at the beginning of the calibration cycle includes these effects:
 - 1) The temperature difference between the calibration environment and the use environment
 - 2) The orientation relative to the gravitation field changing between the calibration environment and the use environment
 - 3) Retrace effects in both the calibration environment and the use environment due to turning the instrument power off.
 - 4) Settability
- e. N is the harmonic mixing mode.

Description	Specifications	Supplemental Information
Frequency Readout Accuracy Example for EMC ^d	$\pm(\text{marker freq.} \times \text{freq. ref. accy} + 0.25\% \times \text{span} + 5\% \times \text{RBW}^a + 2\text{ Hz} + 0.5 \times \text{horizontal resolution}^b)$	Single detector only ^c $\pm 0.0032\% \text{ (nominal)}$

- a. The warranted performance is only the sum of all errors under autocoupled conditions. Under non-autocoupled conditions, the frequency readout accuracy will nominally meet the specification equation, except for conditions in which the RBW term dominates, as explained in examples below. The nominal RBW contribution to frequency readout accuracy is 2 % of RBW for RBWs from 1 Hz to 390 kHz, 4 % of RBW from 430 kHz through 3 MHz (the widest autocoupled RBW), and 30 % of RBW for the (manually selected) 4, 5, 6 and 8 MHz RBWs.
First example: a 120 MHz span, with autocoupled RBW. The autocoupled ratio of span to RBW is 106:1, so the RBW selected is 1.1 MHz. The $5\% \times \text{RBW}$ term contributes only 55 kHz to the total frequency readout accuracy, compared to 300 kHz for the $0.25\% \times \text{span}$ term, for a total of 355 kHz. In this example, if an instrument had an unusually high RBW centering error of 7 % of RBW (77 kHz) and a span error of 0.20 % of span (240 kHz), the total actual error (317 kHz) would still meet the computed specification (355 kHz).
Second example: a 20 MHz span, with a 4 MHz RBW. The specification equation does not apply because the Span: RBW ratio is not autocoupled. If the equation did apply, it would allow 50 kHz of error (0.25 %) due to the span and 200 kHz error (5 %) due to the RBW. For this non-autocoupled RBW, the RBW error is nominally 30 %, or 1200 kHz.
- b. Horizontal resolution is due to the marker reading out one of the trace points. The points are spaced by $\text{span}/(\text{Npts} - 1)$, where Npts is the number of sweep points. For example, with the factory preset value of 1001 sweep points, the horizontal resolution is $\text{span}/1000$. However, there is an exception: When both the detector mode is "normal" and the span $> 0.25 \times (\text{Npts} - 1) \times \text{RBW}$, peaks can occur only in even-numbered points, so the effective horizontal resolution becomes doubled, or $\text{span}/500$ for the factory preset case. When the RBW is autocoupled and there are 1001 sweep points, that exception occurs only for spans > 750 MHz.
- c. Specifications apply to traces in two cases: when all active traces use the same detector, and to any trace that uses the peak detector. When multiple simultaneous detectors are in use, additional errors of 0.5, 1.0 or 1.5 display points will occur in some detectors, depending on the combination of detectors in use. In one example, with positive peak, negative peak and average detection, there is an additional error only in the average detection trace, which shifts the apparent signal position left by 0.5 display points.
- d. In most cases, the frequency readout accuracy of the analyzer can be exceptionally good. As an example, Agilent has characterized the accuracy of a span commonly used for Electro-Magnetic Compatibility (EMC) testing using a source frequency locked to the analyzer. Ideally, this sweep would include EMC bands C and D and thus sweep from 30 to 1000 MHz. Ideally, the analysis bandwidth would be 120 kHz at -6 dB, and the spacing of the points would be half of this (60 kHz). With a start frequency of 30 MHz and a stop frequency of 1000.2 MHz and a total of 16168 points, the spacing of points is ideal. The detector used was the Peak detector. The accuracy of frequency readout of all the points tested in this span was with $\pm 0.0032\%$ of the span. A perfect analyzer with this many points would have an accuracy of $\pm 0.0031\%$ of span. Thus, even with this large number of display points, the errors in excess of the bucket quantization limitation were negligible.

Description	Specifications	Supplemental Information
Frequency Counter^a	Count Accuracy $\pm(\text{marker freq.} \times \text{freq. Ref. Accy.} + 0.100 \text{ Hz})$ Delta Count Accuracy $\pm(\text{delta freq.} \times \text{freq. Ref. Accy.} + 0.141 \text{ Hz})$ Resolution 0.001 Hz	See note ^b


Description	Specifications	Supplemental Information
Frequency Span	Range Swept and FFT <i>Option 503</i> 0 Hz, 10 Hz to 3.6 GHz <i>Option 508</i> 0 Hz, 10 Hz to 8.4 GHz <i>Option 513</i> 0 Hz, 10 Hz to 13.6 GHz <i>Option 526</i> 0 Hz, 10 Hz to 26.5 GHz Resolution 2 Hz Span Accuracy Swept $\pm(0.25 \% \times \text{span} + \text{horizontal resolution}^{\text{c}})$ FFT $\pm(0.10 \% \times \text{span} + \text{horizontal resolution}^{\text{c}})$	

a. Instrument conditions: RBW = 1 kHz, gate time = auto (100 ms), S/N \geq 50 dB, frequency = 1 GHz
 b. If the signal being measured is locked to the same frequency reference as the analyzer, the specified count accuracy is ± 0.100 Hz under the test conditions of footnote^a. This error is a noisiness of the result. It will increase with noisy sources, wider RBWs, lower S/N ratios, and source frequencies > 1 GHz.
 c. Horizontal resolution is due to the marker reading out one of the trace points. The points are spaced by $\text{span}/(\text{Npts} - 1)$, where Npts is the number of sweep points. For example, with the factory preset value of 1001 sweep points, the horizontal resolution is $\text{span}/1000$. However, there is an exception: When both the detector mode is "normal" and the span $> 0.25 \times (\text{Npts} - 1) \times \text{RBW}$, peaks can occur only in even-numbered points, so the effective horizontal resolution becomes doubled, or $\text{span}/500$ for the factory preset case. When the RBW is auto coupled and there are 1001 sweep points, that exception occurs only for spans > 750 MHz.

Description	Specifications	Supplemental Information
Sweep Time Range Span = 0 Hz Span \geq 10 Hz Accuracy Span \geq 10 Hz, swept Span \geq 10 Hz, FFT Span = 0 Hz Sweep Trigger Delayed Trigger ^a Range Span \geq 10 Hz, swept Span = 0 Hz or FFT Resolution	1 μ s to 6000 s 1 ms to 4000 s Free Run, Line, Video, External 1, External 2, RF Burst, Periodic Timer 1 μ s to 500 ms -150 ms to +500 ms 0.1 μ s	\pm 0.01 % (nominal) \pm 40 % (nominal) \pm 0.01 % (nominal)

a. Delayed trigger is available with line, video, RF burst and external triggers.

Description	Specifications	Supplemental Information
Number of Frequency Display Trace Points (buckets) Factory preset Range	1001 1 to 20001	Zero and non-zero spans

Description	Specifications	Supplemental Information
Resolution Bandwidth (RBW) Range (–3.01 dB bandwidth)	1 Hz to 8 MHz Bandwidths above 3 MHz are 4, 5, 6, and 8 MHz. Bandwidths 1 Hz to 3 MHz are spaced at 10 % spacing using the E24 series (24 per decade): 1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1 in each decade.	
Power bandwidth accuracy ^a		
RBW Range 1 Hz – 750 kHz 820 kHz – 1.2 MHz 1.3 – 2.0 MHz 2.2 – 3 MHz 4 – 8 MHz	CF Range All <3.6 GHz <3.6 GHz <3.6 GHz <3.6 GHz	$\pm 1.0\%$ (0.044 dB) $\pm 2.0\%$ (0.088 dB) $\pm 0.07\text{ dB}$ (nominal) $\pm 0.15\text{ dB}$ (nominal) $\pm 0.25\text{ dB}$ (nominal)
Accuracy (–3.01 dB bandwidth) ^b	1 Hz to 1.3 MHz RBW 1.5 MHz to 3 MHz RBW (CF \leq 3.6 GHz) (CF $>$ 3.6 GHz) 4 MHz to 8 MHz RBW (CF \leq 3.6 GHz) (CF $>$ 3.6 GHz) Selectivity (–60 dB/–3 dB)	$\pm 2\%$ (nominal) $\pm 7\%$ (nominal) $\pm 8\%$ (nominal) $\pm 15\%$ (nominal) $\pm 20\%$ (nominal) 4.1:1 (nominal)

a. The noise marker, band power marker, channel power and ACP all compute their results using the power bandwidth of the RBW used for the measurement. Power bandwidth accuracy is the power uncertainty in the results of these measurements due only to bandwidth-related errors. (The analyzer knows this power bandwidth for each RBW with greater accuracy than the RBW width itself, and can therefore achieve lower errors.) The warranted specifications shown apply to the Gaussian RBW filters used in swept and zero span analysis. There are four different kinds of filters used in the spectrum analyzer: Swept Gaussian, Swept Flattop, FFT Gaussian and FFT Flattop. While the warranted performance only applies to the swept Gaussian filters, because only they are kept under statistical process control, the other filters nominally have the same performance.

b. Resolution Bandwidth Accuracy can be observed at slower sweep times than autocoupled conditions. Normal sweep rates cause the shape of the RBW filter displayed on the analyzer screen to widen by nominally 6 %. This widening declines to 0.6 % nominal when the Auto Swp Time key is set to Accy instead of Norm. The true bandwidth, which determines the response to impulsive signals and noise-like signals, is not affected by the sweep rate.

Description	Specification	Supplemental information
Analysis Bandwidth^a		
Standard	10 MHz	
With <i>Option B25</i>	25 MHz	

Description	Specifications	Supplemental Information
Video Bandwidth (VBW)		
Range	Same as Resolution Bandwidth range plus wide-open VBW (labeled 50 MHz)	
Accuracy		±6 % (nominal) in swept mode and zero span ^b

- a. Analysis bandwidth is the instantaneous bandwidth available about a center frequency over which the input signal can be digitized for further analysis or processing in the time, frequency, or modulation domain.
- b. For FFT processing, the selected VBW is used to determine a number of averages for FFT results. That number is chosen to give roughly equivalent display smoothing to VBW filtering in a swept measurement. For example, if $\text{VBW}=0.1 \times \text{RBW}$, four FFTs are averaged to generate one result.

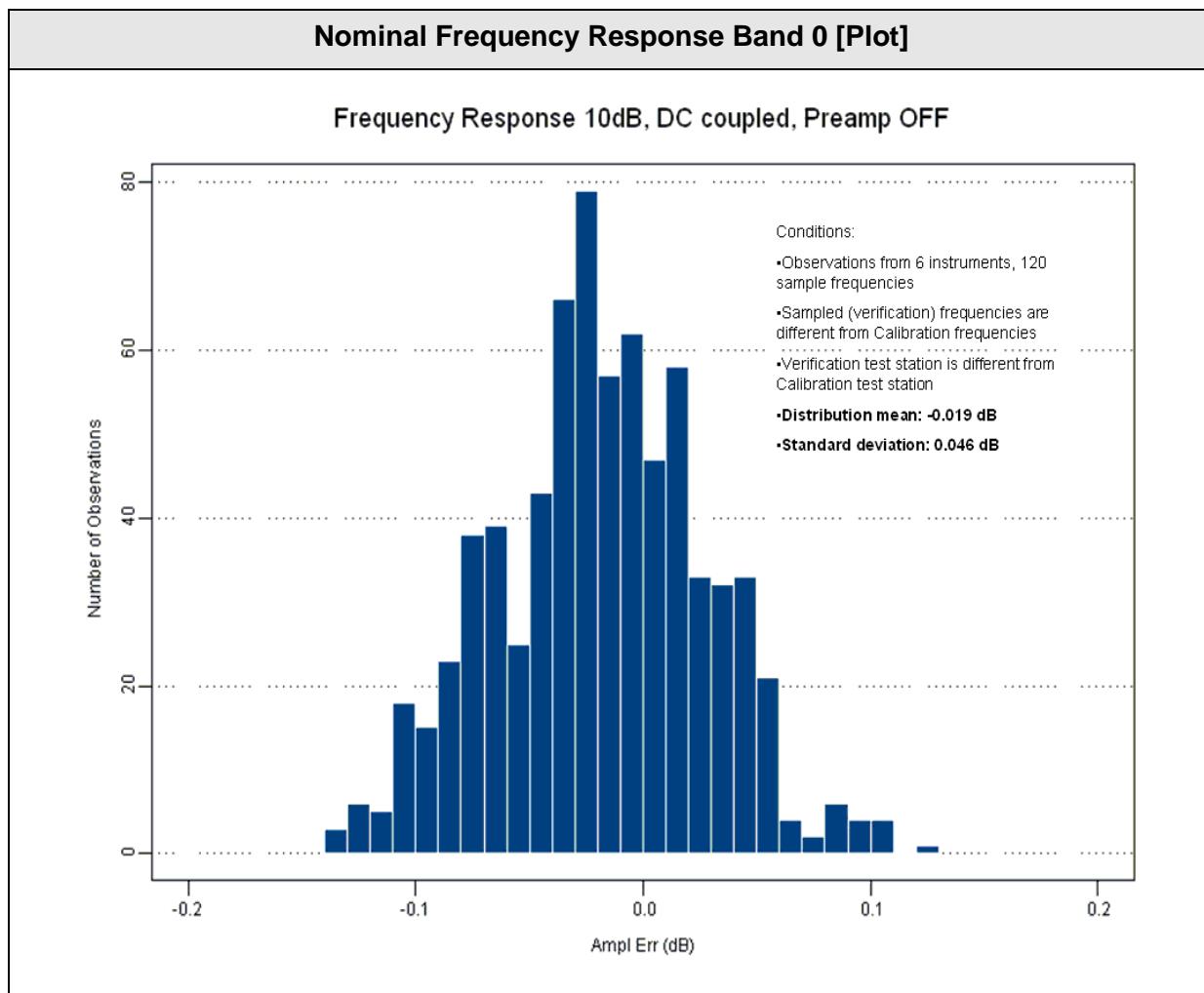
Amplitude Accuracy and Range

Description	Specifications	Supplemental Information
Measurement Range	Displayed Average Noise Level to +30 dBm	
Preamp On	Displayed Average Noise Level to +25 dBm	<i>Options P03, P08, P13, P26</i>
Input Attenuation Range	0 to 70 dB, in 2 dB steps	

Description	Specifications	Supplemental Information
Maximum Safe Input Level		Applies with or without preamp (<i>Options P03, P08, P13, P26</i>)
Average Total Power	+30 dBm (1 W)	
Peak Pulse Power <10 μ s pulse width, <1 % duty cycle input attenuation \geq 30 dB	+50 dBm (100 W)	
DC volts		
DC Coupled	± 0.2 Vdc	
AC Coupled	± 70 Vdc	

Description	Specifications	Supplemental Information
Display Range		
Log Scale	Ten divisions displayed; 0.1 to 1.0 dB/division in 0.1 dB steps, and 1 to 20 dB/division in 1 dB steps	
Linear Scale	Ten divisions	

Description	Specifications	Supplemental Information
Marker Readout^a		
Log units resolution		
Average Off, on-screen	0.01 dB	
Average On or remote	0.001 dB	
Linear units resolution		≤1 % of signal level (nominal)



a. Reference level and off-screen performance: The reference level (RL) behavior differs from previous analyzers (except PSA) in a way that makes the Agilent MXA Signal Analyzer more flexible. In previous analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in previous analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarithmic amplifier in the MXA signal analyzer, however, is implemented digitally such that the range and resolution greatly exceed other instrument limitations. Because of this, the MXA signal analyzer can make measurements largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a measurement function, a marker can read out results that are off-screen, either above or below, without any change in accuracy. The only exception to the independence of RL and the way in which the measurement is performed is in the input attenuation setting: When the input attenuation is set to auto, the rules for the determination of the input attenuation include dependence on the reference level. Because the input attenuation setting controls the tradeoff between large signal behaviors (third-order intermodulation and compression) and small signal effects (noise), the measurement results can change with RL changes when the input attenuation is set to auto.

Frequency Response

Description	Specifications			Supplemental Information
Frequency Response Maximum error relative to reference condition (50 MHz) Mechanical attenuator only ^a Swept operation ^b				
Attenuation 10 dB 20Hz to 10 MHz 10 MHz to 3.6 GHz 3.5 to 8.4 GHz ^{cd} 8.3 to 13.6 GHz ^{cd} 13.5 to 22.0 GHz ^{cd} 22.0 to 26.5 GHz ^{cd}	20 to 30 °C	5 to 50 °C	95th Percentile (≈2σ)	
	±0.6 dB	±0.8 dB	±0.28 dB	
	±0.45 dB	±0.57 dB	±0.17 dB	
	±1.5 dB	±2.5 dB	±0.48 dB	
	±2.0 dB	±2.7 dB	±0.47 dB	
	±2.0 dB	±2.7 dB	±0.52 dB	
	±2.5 dB	±3.7 dB	±0.71 dB	

- a. See the Electronic Attenuator (*Option EA3*) chapter for Frequency Response using the electronic attenuator.
- b. For Sweep Type = FFT, add the RF flatness errors of this table to the IF Frequency Response errors. An additional error source, the error in switching between swept and FFT sweep types, is nominally ±0.01 dB and is included within the “Absolute Amplitude Error” specifications.
- c. Specifications for frequencies > 3.5 GHz apply for sweep rates ≤ 100 MHz/ms.
- d. Preselector centering applied.

Description		Specifications	Supplemental Information		
Freq(GHz)	FFT Width ^b	Max Error (dB) ^c	95 th Percentile		
			Midwidth Error (dB)	Slope (dB/MHz)	Rms (nominal) ^d
≤ 3.6	≤ 10 MHz	0.40	0.13dB	0.10	0.036B
	> 10 MHz	0.45	0.13dB	0.05	0.06dB
> 3.6	≤ 10 MHz				0.25 dB
	10 MHz				0.60dB

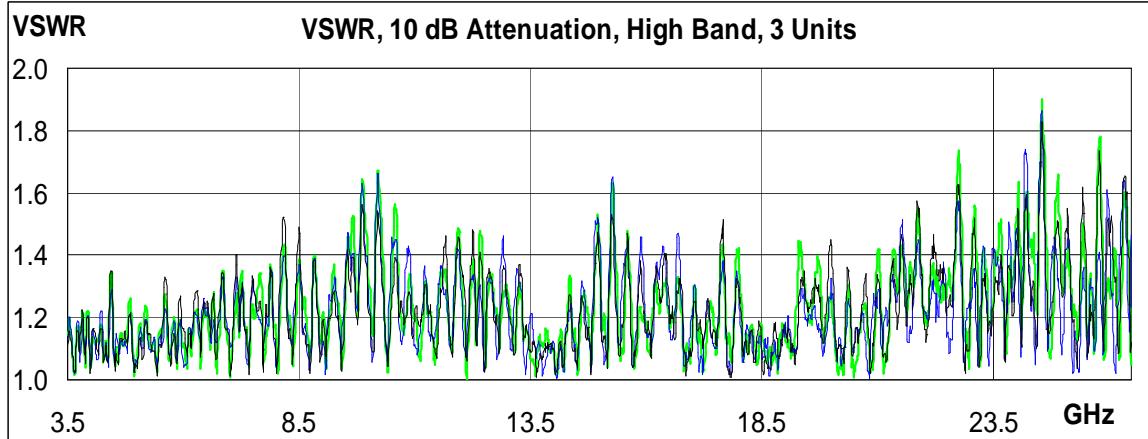
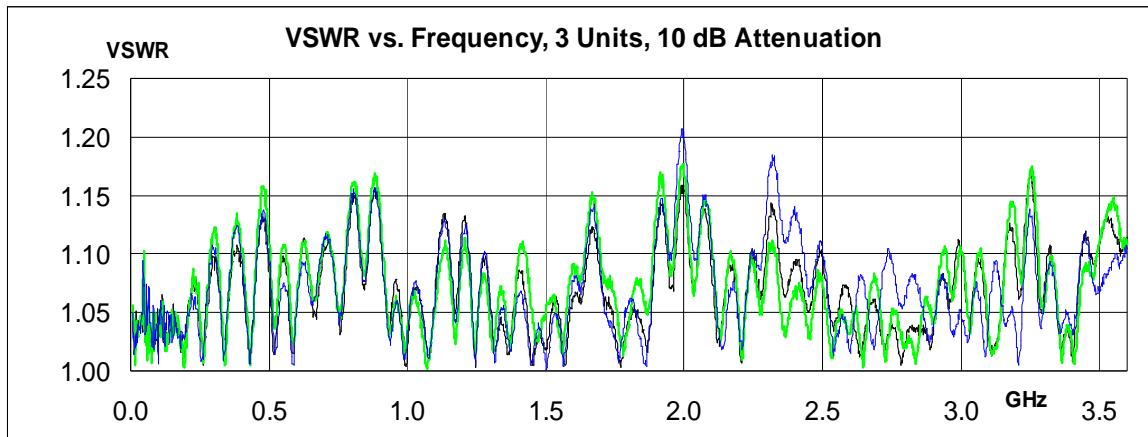
- a. The IF frequency response includes effects due to RF circuits such as input filters, that are a function of RF frequency, in addition to the IF pass-band effects.
- b. FFT widths greater than 10 MHz require *Option B25*.
- c. The maximum error at an offset (f) from the center of the FFT width is given by the expression $\pm [\text{Midwidth Error} + (f \times \text{Slope})]$, but never exceeds $\pm \text{Max Error}$. Usually, the span is no larger than the FFT width in which case the center of the FFT width is the center frequency of the analyzer. When the analyzer span is wider than the FFT width, the span is made up of multiple concatenated FFT results, and thus has multiple centers of FFT widths so the f in the equation is the offset from the nearest center. These specifications include the effect of RF frequency response as well as IF frequency response at the worst case center frequency. Performance is nominally three times better at most center frequencies.
- d. The “RMS” nominal performance is the standard deviation of the response relative to the center frequency, integrated across a 10 or 25 MHz span. This performance measure was observed at a center frequency in each harmonic mixing band, which is representative of all center frequencies; it is not the worst case frequency.

Description	Specifications	Supplemental Information
<p>Input Attenuation Switching Uncertainty</p> <p>Relative to 10 dB (reference setting)</p> <p>Frequency Range</p> <p>50 MHz (reference frequency)</p> <p>Attenuation > 2 dB</p> <p>20 Hz to 3.6 GHz</p> <p>3.5 to 8.4 GHz</p> <p>8.3 to 13.6 GHz</p> <p>13.5 to 26.5 GHz</p>	<p>±0.20 dB</p>	<p>Specifications also apply to <i>Options P03, P08, P13, P26</i></p> <p>±0.08 dB (typical)</p> <p>±0.3 dB (nominal)</p> <p>±0.5 dB (nominal)</p> <p>±0.7 dB (nominal)</p> <p>±0.7 dB (nominal)</p>

Description	Specifications	Supplemental Information
Absolute Amplitude Accuracy At 50 MHz ^a 20 to 30 °C 5 to 50 °C At all frequencies ^a 20 to 30 °C 5 to 50 °C 95 th Percentile Absolute Amplitude Accuracy ^b Wide range of signal levels, RBWs, RLs, etc. 0 to 3.6 GHz, Atten = 10 dB Amplitude Reference Accuracy Preamp On ^c (<i>Options P03, P08, P13, P26</i>)	±0.33 dB ±0.36 dB ±(0.33 dB + frequency response) ±(0.36 dB + frequency response) ±(0.39 dB + frequency response)	±0.15 dB (95 th percentile) ±0.30 dB ±0.05 dB (nominal)

- a. Absolute amplitude accuracy is the total of all amplitude measurement errors, and applies over the following subset of settings and conditions: $1 \text{ Hz} \leq \text{RBW} \leq 1 \text{ MHz}$; Input signal $-10 \text{ to } -50 \text{ dBm}$; Input attenuation 10 dB; span $< 5 \text{ MHz}$ (nominal additional error for span $\geq 5 \text{ MHz}$ is 0.02 dB); all settings autocoupled except Auto Swp Time = Accy; combinations of low signal level and wide RBW use VBW $\leq 30 \text{ kHz}$ to reduce noise. This absolute amplitude accuracy specification includes the sum of the following individual specifications under the conditions listed above: Scale Fidelity, Reference Level Accuracy, Display Scale Switching Uncertainty, Resolution Bandwidth Switching Uncertainty, 50 MHz Amplitude Reference Accuracy, and the accuracy with which the instrument aligns its internal gains to the 50 MHz Amplitude Reference.
- b. Absolute Amplitude Accuracy for a wide range of signal and measurement settings, covers the 95th percentile proportion with 95 % confidence. Here are the details of what is covered and how the computation is made:

The wide range of conditions of RBW, signal level, VBW, reference level and display scale are discussed in footnote ^b. There are 44 quasirandom combinations used, tested at a 50 MHz signal frequency. We compute the 95th percentile proportion with 95 % confidence for this set observed over a statistically significant number of instruments. Also, the frequency response relative to the 50 MHz response is characterized by varying the signal across a large number of quasi-random verification frequencies that are chosen to not correspond with the frequency response adjustment frequencies. We again compute the 95th percentile proportion with 95 % confidence for this set observed over a statistically significant number of instruments. We also compute the 95th percentile accuracy of tracing the calibration of the 50 MHz absolute amplitude accuracy to a national standards organization. We also compute the 95th percentile accuracy of tracing the calibration of the relative frequency response to a national standards organization. We take the root-sum-square of these four independent Gaussian parameters. To that rss we add the environmental effects of temperature variations across the 20 to 30 [DEGREES]C range. These computations and measurements are made with the mechanical attenuator only in circuit, set to the reference state of 10 dB.



A similar process is used for computing the result when using the electronic attenuator under a wide range of settings: all even settings from 4 through 24 dB inclusive, with the mechanical attenuator set to 10 dB. Then the worse of the two computed 95th percentile results (they were very close) is shown.

- c. Same settings as footnote b, except that the signal level at the preamp input is $-40 \text{ to } -80 \text{ dBm}$. Total power at preamp (dBm) = total power at input (dBm) minus input attenuation (dB). For frequencies from 100 kHz to 26.5 GHz.

Description	Specifications	Supplemental Information
RF Input VSWR at tuned frequency 10 dB attenuation, 50 MHz		Nominal ^a 1.07:1
Frequency 10 MHz to 3.6 GHz		Input Attenuation 0 dB ≥10dB < 2.2:1 See nominal VSWR plots
3.6 to 26.5 GHz		See nominal VSWR plots
Internal 50 MHz calibrator is On Alignments running		Open input Open input

a. The nominal SWR stated is the worst case RF frequency in three representative instruments.

Nominal VSWR [Plot]

Description	Specifications	Supplemental Information
Resolution Bandwidth Switching Uncertainty relative to reference BW of 30 kHz 1.0 Hz to 1.5 MHz RBW 1.6 MHz to 3 MHz Manually selected wide RBWs: 4, 5, 6, 8 MHz	±0.05 dB ±0.10 dB ±1.0 dB	

Description	Specifications	Supplemental Information
Reference Level^a Range Log Units Linear Units Accuracy	–170 to +30 dBm, in 0.01 dB steps 707 pV to 7.07 V, with 0.01 dB resolution (0.11 %) 0 dB ^b	

a. Reference level and off-screen performance: The reference level (RL) behavior differs from previous analyzers (except PSA) in a way that makes the Agilent MXA Signal Analyzer more flexible. In previous analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in previous analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarithmic amplifier in the MXA signal analyzer, however, is implemented digitally such that the range and resolution greatly exceed other instrument limitations. Because of this, the MXA signal analyzer can make measurements largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a measurement function, a marker can read out results that are off-screen, either above or below, without any change in accuracy. The only exception to the independence of RL and the way in which the measurement is performed is in the input attenuation setting: When the input attenuation is set to auto, the rules for the determination of the input attenuation include dependence on the reference level. Because the input attenuation setting controls the tradeoff between large signal behaviors (third-order intermodulation and compression) and small signal effects (noise), the measurement results can change with RL changes when the input attenuation is set to auto.

b. Because reference level affects only the display, not the measurement, it causes no additional error in measurement results from trace data or markers.

Description	Specifications	Supplemental Information
Display Scale Switching Uncertainty Switching between Linear and Log Log Scale Switching	0 dB ^a 0 dB ^a	

- a. Because Log/Lin and Log Scale Switching affect only the display, not the measurement, they cause no additional error in measurement results from trace data or markers.

Description	Specifications	Supplemental Information
<p>Display Scale Fidelity^{abc} Log-Linear Fidelity (relative to the reference condition of -25 dBm input through the 10 dB attenuation, or -35 dBm at the input mixer)</p> <p>Input mixer level^d -80 dBm \leq ML \leq -10 dBm ML $<$ -80 dBm</p> <p>Relative Fidelity^e sum of the following terms: high level term instability term slope term prefilter term</p>	<p>Linearity ± 0.10 dB ± 0.15 dB</p>	<p>Applies for mixer level^d range from -10 to -80 dBm, mechanical attenuator only, preamp off, dither on</p> <p>Up to ± 0.045 dB^f Up to ± 0.018 dB From equation^g Up to ± 0.005 dB^h</p>

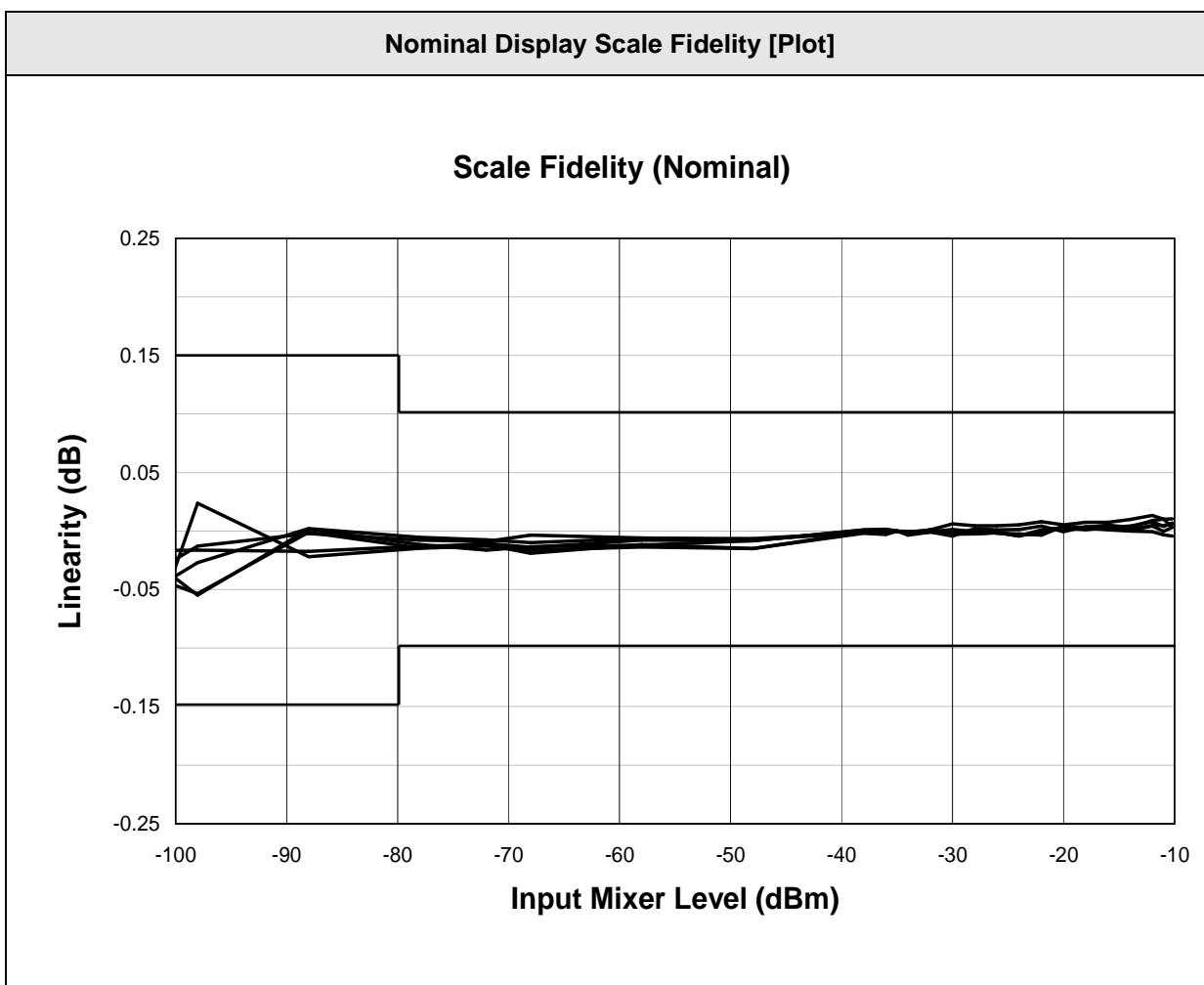
a. Supplemental information: The amplitude detection linearity specification applies at all levels below -10 dBm at the input mixer; however, noise will reduce the accuracy of low level measurements. The amplitude error due to noise is determined by the signal-to-noise ratio, S/N. If the S/N is large (20 dB or better), the amplitude error due to noise can be estimated from the equation below, given for the 3-sigma (three standard deviations) level.

$$3\sigma = 3(20\text{dB})\log \langle 1 + 10^{-(\langle S/N + 3\text{dB} \rangle / 20\text{dB})} \rangle$$

The errors due to S/N ratio can be further reduced by averaging results. For large S/N (20 dB or better), the 3sigma level can be reduced proportional to the square root of the number of averages taken.

b. The scale fidelity is warranted with ADC dither set to On. Dither increases the noise level by nominally only 0.24 dB for the most sensitive case (preamp Off, best DANL frequencies). With dither Off, scale fidelity for low level signals, around -60 dBm or lower, will nominally degrade by 0.2 dB.

c. Reference level and off-screen performance: The reference level (RL) behavior differs from previous analyzers (except PSA) in a way that makes the Agilent MXA Signal Analyzer more flexible. In previous analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in previous analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarithmic amplifier in the MXA signal analyzer, however, is implemented digitally such that the range and resolution greatly exceed other instrument limitations. Because of this, the MXA signal analyzer can make measurements largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a measurement function, a marker can read out results that are off-screen, either above or below, without any change in accuracy. The only exception to the independence of RL and the way in which the measurement is performed is in the input attenuator setting: When the input attenuator is set to auto, the rules for the determination of the input attenuation include dependence on the reference level. Because the input attenuation setting controls the tradeoff between large signal behaviors (third-order intermodulation and compression) and small signal effects (noise), the measurement results can change with RL changes when the input attenuation is set to auto.


d. Mixer level = Input Level - Input Attenuator

e. The relative fidelity is the error in the measured difference between two signal levels. It is so small in many cases that it cannot be verified without being dominated by measurement uncertainty of the verification. Because of this verification difficulty, this specification gives nominal performance, based on numbers that are as conservatively determined as those used in warranted specifications. We will consider one example of the use of the error equation to compute the nominal performance.

Example: the accuracy of the relative level of a sideband around -60 dBm, with a carrier at -5 dBm, using attenuator = 10 dB, RBW = 3 kHz, evaluated with swept analysis. The high level term is evaluated with $P1 =$

-15 dBm and P2 = -70 dBm at the mixer. This gives a maximum error within ± 0.039 dB. The instability term is ± 0.018 dB. The slope term evaluates to ± 0.050 dB. The prefilter term applies and evaluates to the limit of ± 0.005 dB. The sum of all these terms is ± 0.112 dB.

- f. Errors at high mixer levels will nominally be well within the range of ± 0.045 dB $\times \{\exp[(P1 - \text{Pref})/(8.69 \text{ dB})] - \exp[(P2 - \text{Pref})/(8.69 \text{ dB})]\}$. In this expression, P1 and P2 are the powers of the two signals, in decibel units, whose relative power is being measured. Pref is -10 dBm. All these levels are referred to the mixer level.
- g. Slope error will nominally be well within the range of $\pm 0.0009 \times (P1 - P2)$. P1 and P2 are defined in footnote f.
- h. A small additional error is possible. In FFT sweeps, this error is possible for spans under 4.01 kHz. For non-FFT measurements, it is possible for RBWs of 3.9 kHz or less. The error is well within the range of $\pm 0.0021 \times (P1 - P2)$ subject to a maximum of ± 0.005 dB. P1 and P2 are defined in footnote f

Description	Specifications	Supplemental Information
Available Detectors	Normal, Peak, Sample, Negative Peak, Average	Average detector works on RMS, Voltage and Logarithmic scales

Dynamic Range

Gain Compression

Description	Specifications	Supplemental Information
1 dB Gain Compression Point (Two-tone)^{abc}	Maximum power at mixer ^d	
20 to 500 MHz	0 dBm	+3 dBm (typical)
500 MHz to 3.6 GHz	+3 dBm	+7 dBm (typical)
3.6 to 26.5 GHz	0 dBm	+4 dBm (typical)
Clipping (ADC Over Range)	-10 dBm	Low frequency exceptions ^e
Any signal offset		
Signal offset >5 times IF prefilter bandwidth		+12 dBm (nominal)
IF Prefilter Bandwidth		
Zero Span or Sweep: Swept:	Sweep Type = FFT:	
RBW	FFT Width	IF Prefilter 3 dB Bandwidth, nominal
≤ 3.9 kHz	< 4.01 kHz	8.9 kHz
4.3 – 27 kHz	< 28.81 kHz	79 kHz
30 – 160 kHz	< 167.4 kHz	303 kHz
180 – 390 kHz	< 411.9 kHz	966 kHz
430 kHz – 8 MHz	< 7.99 MHz	10.9 MHz

- a. Large signals, even at frequencies not shown on the screen, can cause the analyzer to mismeasure on-screen signals because of two-tone gain compression. This specification tells how large an interfering signal must be in order to cause a 1 dB change in an on-screen signal.
- b. Specified at 1 kHz RBW with 100 kHz tone spacing. The compression point will nominally equal to the specification for tone spacing greater than 5 times the prefilter bandwidth. At smaller spacings, ADC clipping may occur at a level lower than the 1 dB compression point.
- c. Reference level and off-screen performance: The reference level (RL) behavior differs from previous analyzers in a way that makes the Agilent MXA Signal Analyzer more flexible. In previous analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in previous analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarithmic amplifier in the MXA signal analyzer, however, is implemented digitally such that the range and resolution greatly exceed other instrument limitations. Because of this, the MXA signal analyzer can make measurements largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a measurement function, a marker can read out results that are off-screen, either above or below, without any change in accuracy. The only exception to the independence of RL and the way in which the measurement is performed is in the input attenuation setting: When the input attenuation is set to auto, the rules for the determination of the input attenuation include dependence on the reference level. Because the input attenuation setting controls the tradeoff between large signal behaviors

(third-order intermodulation, compression, and display scale fidelity) and small signal effects (noise), the measurement results can change with RL changes when the input attenuation is set to auto.

- d. Mixer power level (dBm) = input power (dBm) – input attenuation (dB).
- e. The ADC dipping level declines at low frequencies (below 50 MHz) when the LO feed through (the signal that appears at 0 Hz) is within 5 times the prefilter bandwidth (see table) and must be handled by the ADC. For example, with a 300 kHz RBW and prefilter bandwidth at 966 kHz, the clipping level reduces for signal frequencies below 4.83 MHz. For signal frequencies below 2.5 the prefilter bandwidth, there will be additional reduction due to the presence of the image signal (the signal that appears at the negative of the input signal frequency) at the ADC.

Displayed Average Noise Level

Description	Specifications			Supplemental Information
Displayed Average Noise Level (DANL)^a	Input terminated, Sample or Average detector Averaging type = Log 0 dB input attenuation IF Gain = High			
1 Hz Resolution Bandwidth	20 to 30 °C	5 to 50 °C		Typical
<i>Option 503, 508, 513, 526</i>				
9 kHz to 1 MHz ^b				-125 dBm
1 MHz to 10 MHz ^b	-150 dBm	-148 dBm		-153 dBm
10 MHz to 2.1 GHz	-151 dBm	-149 dBm		-154 dBm
2.1 GHz to 3.6 GHz	-149 dBm	-147 dBm		-152 dBm
<i>Option 508, 513, 526</i>				
3.6 GHz to 8.4 GHz	-149 dBm	-147 dBm		-153 dBm
<i>Option 513, 526</i>				
8.4 GHz to 13.6 GHz	-148 dBm	-146 dBm		-151 dBm
<i>Option 526</i>				
13.6 GHz to 17.1 GHz	-144 dBm	-141 dBm		-147 dBm
17.1 GHz to 20.0 GHz	-143 dBm	-140 dBm		-146 dBm
20.0 GHz to 26.5 GHz	-136 dBm	-132 dBm		-142 dBm
<i>Additional DANL, IF Gain=Low^c</i>				-160.5 dBm (nominal)

- a. DANL for zero span and swept is normalized in two ways and for two reasons. DANL is measured in a 1 kHz RBW and normalized to the narrowest available RBW, because the noise figure does not depend on RBW and 1 kHz measurements are faster. The second normalization is that DANL is measured with 10 dB input attenuation and normalized to the 0 dB input attenuation case, because that makes DANL and third order intermodulation test conditions congruent, allowing accurate dynamic range estimation for the analyzer.
- b. DANL below 10 MHz is dominated by phase noise around the LO feedthrough signal. Specifications apply with the best setting of the Phase Noise Optimization control, which is to choose the "Best Phase Noise at offset < 20 kHz" for frequencies below 25 kHz, and "Best Phase Noise at offset > 30 kHz" for frequencies above 25 kHz. The difference in sensitivity with Phase Noise Optimization changes is about 10 dB at 10 and 100 kHz, declining to under 1 dB for signals below 400 Hz, above 800 kHz, and near 25 kHz.
- c. Setting the IF Gain to Low is often desirable in order to allow higher power into the mixer without overload, better compression and better third-order intermodulation. When the Swept IF Gain is set to Low, either by auto coupling or manual coupling, there is noise added above that specified in this table for the IF Gain = High case. That excess noise appears as an additional noise at the input mixer. This level has sub-decibel dependence on center frequency. To find the total displayed average noise at the mixer for Swept IF Gain = Low, sum the powers of the DANL for IF Gain = High with this additional DANL. To do that summation, compute DANL_{total} = $10 \times \log (10^{(DANL_{high} / 10)} + 10^{(AdditionalDANL / 10)})$. In FFT sweeps, the same behavior occurs, except that FFT IF Gain can be set to autorange, where it varies with the input signal level, in addition to forced High and Low settings.

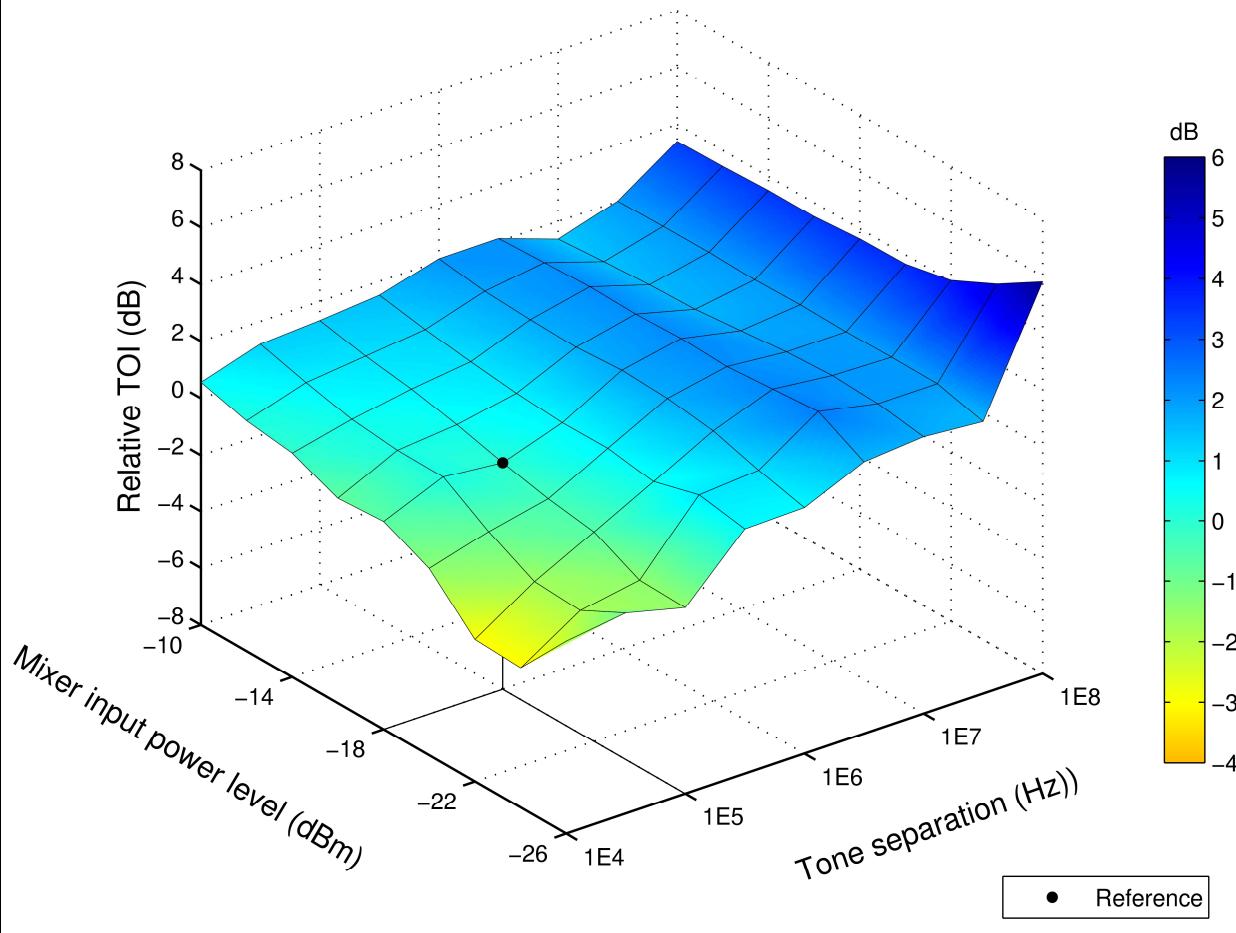
Description	Specifications		Supplemental Information
Spurious Responses	Mixer Level^a Response		Preamp Off ^b
Residual Responses ^c	N/A	-100 dBm	
200 kHz to 8.4 GHz (swept)			-100 dBm (nominal)
Zero span or FFT or other frequencies			
Image Responses			
Tuned Freq. (f)	Excitation Freq.		
10 MHz to 26.5 GHz	f+45 MHz	-10 dBm	-80 dBc
10 MHz to 3.6 GHz	f+10245 MHz	-10 dBm	-113 dBc (typical)
10 MHz to 3.6 GHz	f+645 MHz	-10 dBm	-107 dBc (typical)
3.6 GHz to 13.6 GHz	f+645 MHz	-10 dBm	-108 dBc (typical)
13.6 GHz to 17.1 GHz	f+645 MHz	-10 dBm	-88 dBc (typical)
17.1 GHz to 22 GHz	f+645 MHz	-10 dBm	-85 dBc (typical)
22 GHz to 26.5 GHz	f+645 MHz	-10 dBm	-82 dBc (typical)
LO Related Spurious Responses			
f > 600 MHz from carrier			
10 MHz to 3.6 GHz	-10 dBm	-60 dBc	-90 dBc (typical)
Other Spurious Responses			
First RF Order ^d			
f ≥ 10 MHz from carrier	-10 dBm	-80 dBc	Includes other LO
Higher RF Order ^e			spurious, IF feedthrough,
f ≥ 10 MHz from carrier	-40 dBm	-80 dBc	LO harmonic mixing
Sidebands, offset from CW signal			responses
≤ 200 Hz			Includes higher order
200 Hz to 3 kHz			mixer responses
3 kHz to 30 kHz			
30 kHz to 10 MHz			-60 dBc ^f (nominal)
			-72 dBc ^f (nominal)
			-72 dBc (nominal)
			-80 dBc (nominal)

- a. Mixer Level = Input Level – Input Attenuation.
- b. The spurious response specifications only apply with the preamp turned off. When the preamp is turned on, performance is nominally the same as long as the mixer level is interpreted to be: Mixer Level = Input Level – Input Attenuation – Preamp Gain
- c. Input terminated, 0 dB input attenuation.
- d. With first RF order spurious products, the indicated frequency will change at the same rate as the input, with higher order, the indicated frequency will change at a rate faster than the input.
- e. RBW=100 Hz. With higher RF order spurious responses, the observed frequency will change at a rate faster than the input frequency.
- f. Nominally –40 dBc under large magnetic (0.38 Gauss rms) or vibrational (0.21 g rms) environmental stimuli.

Description	Specifications			Supplemental Information
Second Harmonic Distortion	Mixer Level^a	Distortion	SHI^b	
Source Frequency				
10 MHz to 1.8 GHz	-15 dBm	-60 dBc	+45 dBm	
1.8 to 7 GHz	-15 dBm	-80 dBc	+65 dBm	
7 GHz to 11 GHz	-15 dBm	-70 dBc	+55 dBm	
11 to 13.25 GHz	-15 dBm	-65 dBc	+50 dBm	

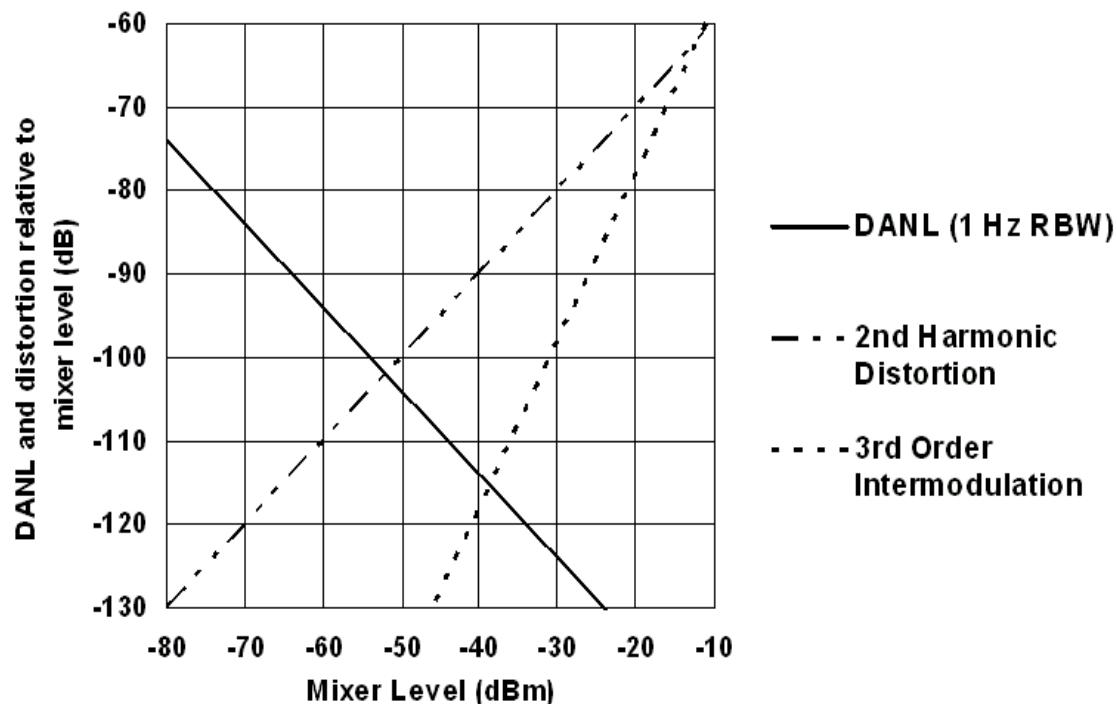
a. Mixer level = Input Level – Input Attenuation

b. SHI = second harmonic intercept. The SHI is given by the mixer power in dBm minus the second harmonic distortion level relative to the mixer tone in dBc.

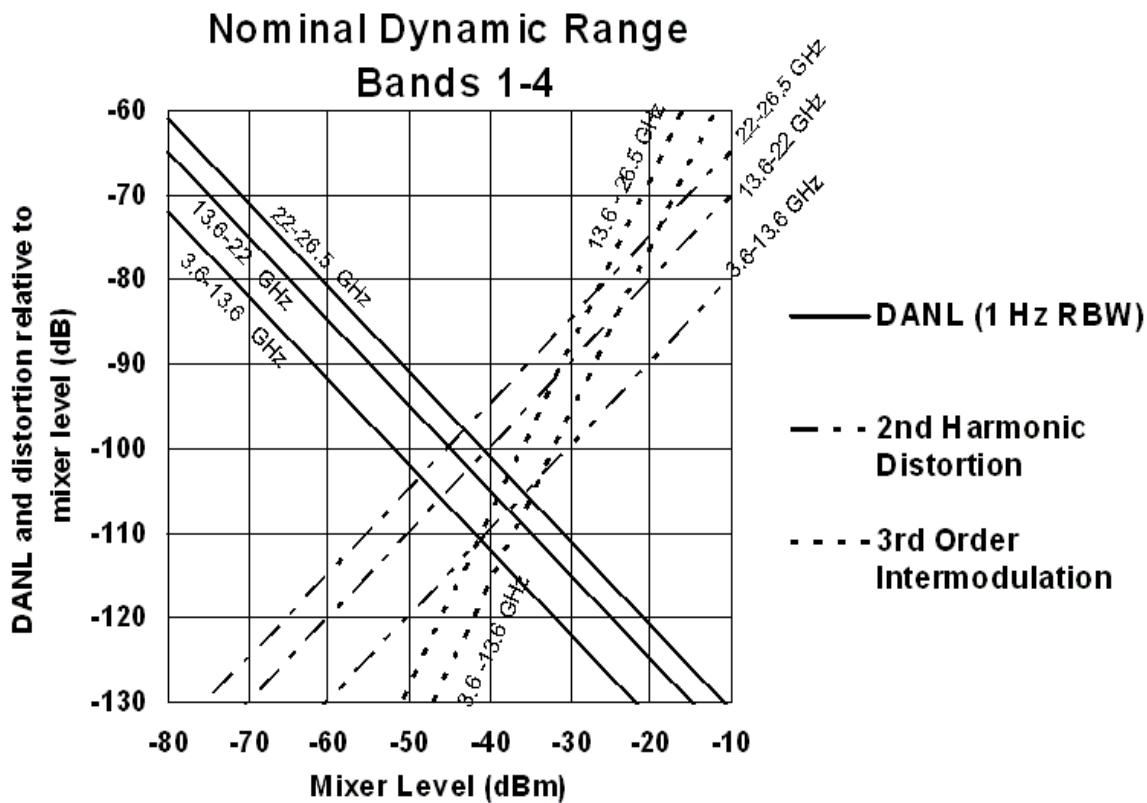

Third Order Intermodulation Distortion

Description	Specifications	Supplemental Information
Third Order Intermodulation Distortion Tone separation > 5 times IF Prefilter Bandwidth ^a		Verification conditions ^b
20 to 30 °C Two –30 dBm tones	Distortion^c Two –30 dBm tones	TOI^d TOI (typical)
10 to 100 MHz 100 to 400 MHz 400 MHz to 1.7 GHz 1.7 to 3.6 GHz 3.6 to 8.4 GHz 8.4 to 13.6 GHz 13.6 to 26.5 GHz	–84 dBc –88 dBc –90 dBc –92 dBc –90 dBc –90 dBc –80 dBc	+12 dBm +14 dBm +15 dBm +16 dBm +15 dBm +15 dBm +10 dBm
5 to 50 °C Two –30 dBm tones	–80 dBc –84 dBc –86 dBc –88 dBc –86 dBc –86 dBc –76 dBc	+10 dBm +12 dBm +13 dBm +14 dBm +13 dBm +13 dBm +8 dBm

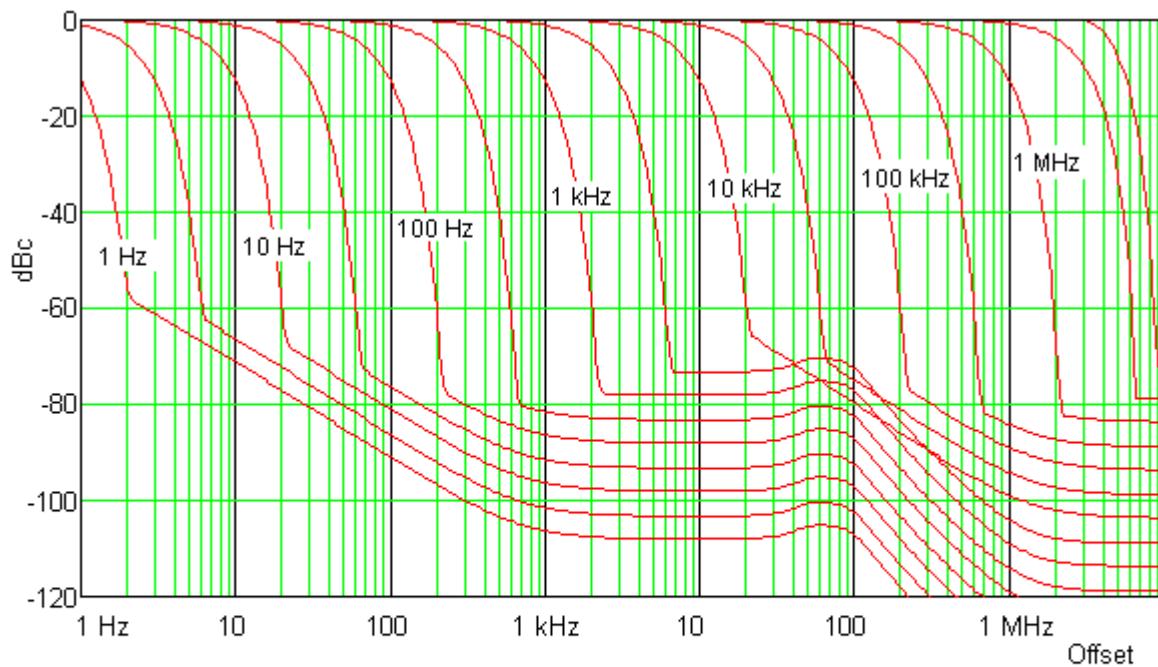
- a. See the IF Prefilter Bandwidth table in the Gain Compression specifications on page 33. When the tone separation condition is met, the effect on TOI of the setting of IF Gain is negligible. TOI is verified with IF Gain set to its best case condition, which is IF Gain = Low.
- b. TOI is verified with two tones, each at –18 dBm at the mixer, spaced by 100 kHz.
- c. Distortion for two tones that are each at –30 dBm is computed from TOI.
- d. TOI = third order intercept. The TOI is given by the mixer tone level (in dBm) minus (distortion/2) where distortion is the relative level of the distortion tones in dBc.


Nominal TOI vs. Mixer Level and Tone Separation [Plot]

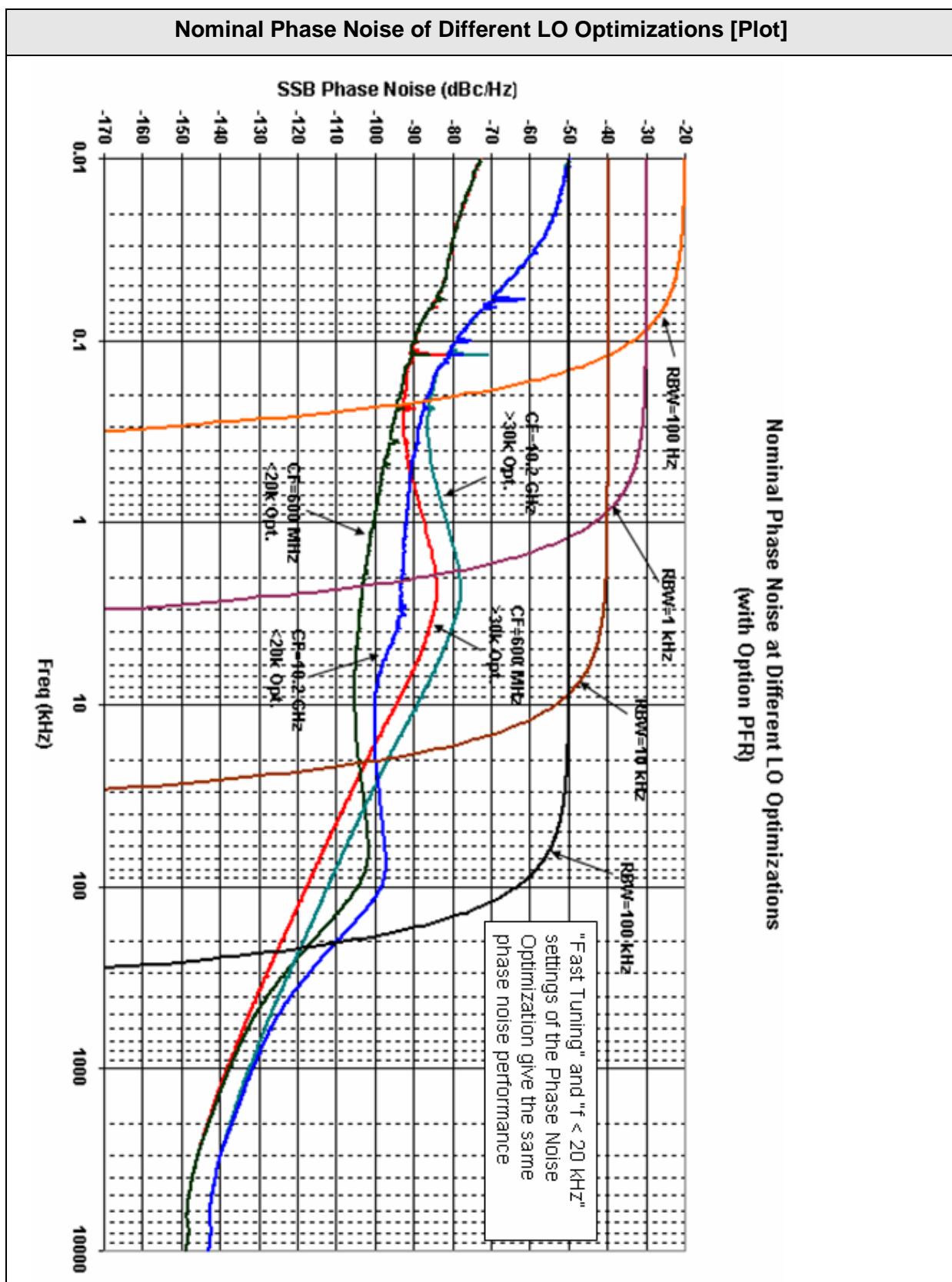
TOI vs. Mixer Level and Tone Separation (Referenced to TOI verification conditions)



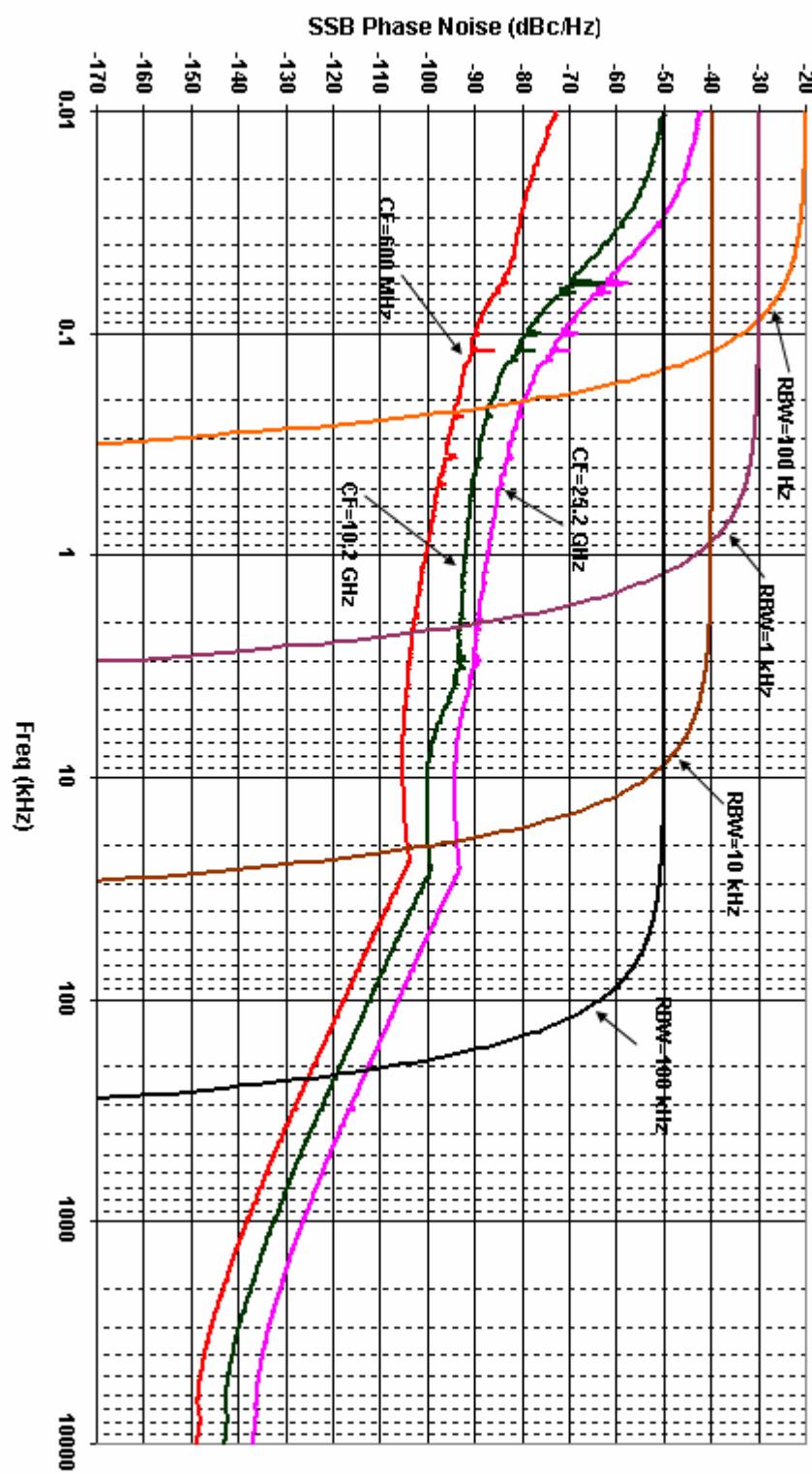
Nominal Dynamic Range at 1 GHz [Plot]


Nominal Range at 1 GHz

Nominal Dynamic Range Bands 1-4 [Plot]


Nominal Dynamic Range vs. Offset Frequency vs. RBW [Plot]

CF = 1 GHz
Mixer Level = -10 dBm
Conditions: Only 2 per decade of the 24/decade RBWs are shown
RBWs 3 kHz and below are shown with phase noise optimized for $f_m < 20$ kHz
RBWs 10 kHz and above are shown with phase noise optimized for $f_m > 30$ kHz
Average Type = Log


Description	Specifications		Supplemental Information
Phase Noise			
Noise Sidebands			
Center Frequency = 1 GHz ^a			
Best-case Optimization ^b			
Offset	20 to 30 °C	5 to 50 °C	
100Hz	-84 dBc/Hz	-82 dBc/Hz	-88 dBc/Hz (typical)
1 kHz			-100 dBc/Hz (nominal)
10 kHz	-103 dBc/Hz	-101 dBc/Hz	-106 dBc/Hz (typical)
100 kHz	-115 dBc/Hz	-114 dBc/Hz	-117 dBc/Hz (typical)
1 MHz	-133 dBc/Hz	-132 dBc/Hz	-137 dBc/Hz (typical)
10 MHz			-148 dBc/Hz (nominal)

- a. The nominal performance of the phase noise at frequencies above the frequency at which the specifications apply (1 GHz) depends on the band and the offset. For low offset frequencies, offsets well under 100 Hz, the phase noise increases by $20 \times \log(f)$. For mid-offset frequencies, such as 10 kHz, band 0 phase noise increases as $20 \times \log[(f + 5.1225)/6.1225]$. For mid-offset frequencies in other bands, phase noise changes as $20 \times \log[(f + 0.3225)/6.1225]$, except f in this expression should never be lower than 5.8. For wide offset frequencies, offsets above about 100 kHz, phase noise increases as $20 \times \log(N)$. N is the LO Multiple as shown on page 10; f is in GHz units in all these relationships; all increases are in units of decibels.
- b. Noise sidebands for offsets of 30 kHz and below are shown for phase noise optimization set to optimize L(f) for f<20 kHz; for offsets of 100 kHz and above, the optimization is set for f>30kHz.

Nominal Phase Noise at Different Center Frequencies [Plot]

Nominal Phase Noise at Different Center Frequencies
(with Option PFR)

Power Suite Measurements

Description	Specifications	Supplemental Information
Channel Power Amplitude Accuracy Case: Radio Std = 3GPP W-CDMA, or IS-95 Absolute Power Accuracy 20 to 30 °C Attenuation = 10 dB		Absolute Amplitude Accuracy ^a + Power Bandwidth Accuracy ^{bc} ±0.80 dB ±0.30 dB (95 th percentile)

Description	Specifications	Supplemental Information
Occupied Bandwidth Frequency Accuracy		±(Span/1000) (nominal)

a. See Amplitude Accuracy and Range section on page 19.

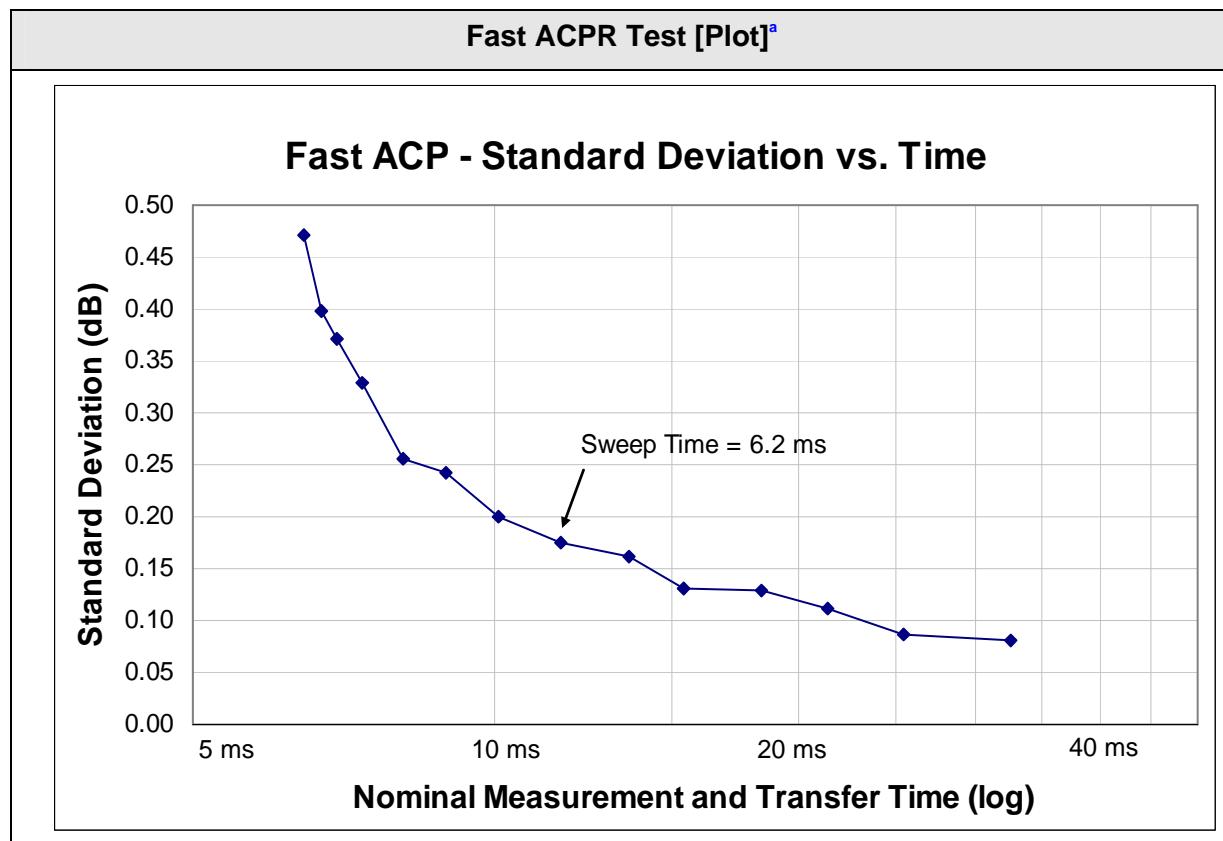
b. See Frequency and Time section on page 10.

c. Expressed in dB.

Description			Specifications	Supplemental Information	
Adjacent Channel Power (ACP)					
Case: Radio Std = None					
Accuracy of ACP Ratio (dBc)				Display Scale Fidelity ^a	
Accuracy of ACP Absolute Power (dBm or dBm/Hz)				Absolute Amplitude Accuracy ^b + Power Bandwidth Accuracy ^{cd}	
Accuracy of Carrier Power (dBm), or Carrier Power PSD (dBm/Hz)				Absolute Amplitude Accuracy ^b + Power Bandwidth Accuracy ^{cd}	
Passbandwidth ^e			–3 dB		
Case: Radio Std = 3GPP W-CDMA				(ACPR; ACLR) ^f	
Minimum power at RF Input				–36 dBm (nominal)	
ACPR Accuracy ^g				RRC weighted, 3.84 MHz noise bandwidth, method = IBW or Fast ^h	
Radio Offset Freq					
MS (UE)	5 MHz		±0.14 dB	At ACPR range of –30 to –36 dBc with optimum mixer level ⁱ	
MS (UE)	10 MHz		±0.21 dB	At ACPR range of –40 to –46 dBc with optimum mixer level ^j	
BTS	5 MHz		±0.49 dB ^h	At ACPR range of –42 to –48 dBc with optimum mixer level ^k	
BTS	10 MHz		±0.44 dB	At ACPR range of –47 to –53 dBc with optimum mixer level ^l	
BTS	5 MHz		±0.21 dB	At –48 dBc non-coherent ACPR ^l	
Dynamic Range				RRC weighted, 3.84 MHz noise bandwidth	
Noise Correction	Offset Freq	Method		ACLR (typical)^m	Optimal ML (Nominal)
off	5 MHz	Filtered IBW		–73 dB	–8 dBm
off	5 MHz	Fast		–72 dB	–9 dBm
off	10 MHz	Filtered IBW		–79 dB	–2 dBm
on	5 MHz	Filtered IBW		–78 dB	–8 dBm
on	10 MHz	Filtered IBW		–82 dB	–2 dBm
RRC Weighting Accuracy ⁿ					
White noise in Adjacent Channel TOI-induced spectrum rms CW error				0.00 dB nominal 0.001 dB nominal 0.012 dB nominal	

- a. The effect of scale fidelity on the ratio of two powers is called the relative scale fidelity. The scale fidelity specified in the Amplitude section is an absolute scale fidelity with -35 dBm at the input mixer as the reference point. The relative scale fidelity is nominally only 0.01 dB larger than the absolute scale fidelity.
- b. See Amplitude Accuracy and Range section.
- c. See Frequency and Time section.
- d. Expressed in decibels.
- e. An ACP measurement measures the power in adjacent channels. The shape of the response versus frequency of those adjacent channels is occasionally critical. One parameter of the shape is its 3 dB bandwidth. When the bandwidth (called the Ref BW) of the adjacent channel is set, it is the 3 dB bandwidth that is set. The passband response is given by the convolution of two functions: a rectangle of width equal to Ref BW and the power response versus frequency of the RBW filter used. Measurements and specifications of analog radio ACPs are often based on defined bandwidths of measuring receivers, and these are defined by their -6 dB widths, not their -3 dB widths. To achieve a passband whose -6 dB width is x , set the Ref BW to be $x - 0.572 \times \text{RBW}$.
- f. Most versions of adjacent channel power measurements use negative numbers, in units of dBc, to refer to the power in an adjacent channel relative to the power in a main channel, in accordance with ITU standards. The standards for W-CDMA analysis include ACLR, a positive number represented in dB units. In order to be consistent with other kinds of ACP measurements, this measurement and its specifications will use negative dBc results, and refer to them as ACPR, instead of positive dB results referred to as ACLR. The ACLR can be determined from the ACPR reported by merely reversing the sign.
- g. The accuracy of the Adjacent Channel Power Ratio will depend on the mixer drive level and whether the distortion products from the analyzer are coherent with those in the UUT. These specifications apply even in the worst case condition of coherent analyzer and UUT distortion products. For ACPR levels other than those in this specifications table, the optimum mixer drive level for accuracy is approximately -37 dBm - (ACPR/3), where the ACPR is given in (negative) decibels.
- h. The Fast method has a slight decrease in accuracy in only one case: for BTS measurements at 5 MHz offset, the accuracy degrades by ± 0.01 dB relative to the accuracy shown in this table.
- i. To meet this specified accuracy when measuring mobile station (MS) or user equipment (UE) within 3 dB of the required -33 dBc ACPR, the mixer level (ML) must be optimized for accuracy. This optimum mixer level is -22 dBm, so the input attenuation must be set as close as possible to the average input power - (-22 dBm). For example, if the average input power is -6 dBm, set the attenuation to 16 dB. This specification applies for the normal 3.5 dB peak-to-average ratio of a single code. Note that if the mixer level is set to optimize dynamic range instead of accuracy, accuracy errors are nominally doubled.
- j. ACPR accuracy at 10 MHz offset is warranted when the input attenuator is set to give an average mixer level of -14 dBm.
- k. In order to meet this specified accuracy, the mixer level must be optimized for accuracy when measuring node B Base Transmission Station (BTS) within 3 dB of the required -45 dBc ACPR. This optimum mixer level is -19 dBm, so the input attenuation must be set as close as possible to the average input power - (-22 dBm). For example, if the average input power is -5 dBm, set the attenuation to 14 dB. This specification applies for the normal 10 dB peak-to-average ratio (at 0.01% probability) for Test Model 1. Note that, if the mixer level is set to optimize dynamic range instead of accuracy, accuracy errors are nominally doubled.
- l. Accuracy can be excellent even at low ACPR levels assuming that the user sets the mixer level to optimize the dynamic range, and assuming that the analyzer and UUT distortions are incoherent. When the errors from the UUT and the analyzer are incoherent, optimizing dynamic range is equivalent to minimizing the contribution of analyzer noise and distortion to accuracy, though the higher mixer level increases the display scale fidelity errors. This incoherent addition case is commonly used in the industry and can be useful for comparison of analysis equipment, but this incoherent addition model is rarely justified. This derived accuracy specification is based on a mixer level of -14 dBm.
- m. Agilent measures 100% of Agilent MXA Signal Analyzers for dynamic range in the factory production process. This measurement requires a near-ideal signal, which is impractical for field and customer use. Because field verification is impractical, Agilent only gives a typical result. More than 80% of prototype instruments met this "typical" specification; the factory test line limit is set commensurate with an on-going 80% yield to this typical. The ACPR dynamic range is verified only at 2 GHz, where Agilent has the near-perfect signal available. The dynamic range is specified for the optimum mixer drive level, which is different in different instruments and different conditions. The test signal is a 1 DPCH signal.
The ACPR dynamic range is the observed range. This typical specification includes no measurement uncertainty.
- n. 3GPP requires the use of a root-raised-cosine filter in evaluating the ACLR of a device. The accuracy of the passband shape of the filter is not specified in standards, nor is any method of evaluating that accuracy. This

footnote discusses the performance of the filter in this instrument. The effect of the RRC filter and the effect of the RBW used in the measurement interact. The analyzer compensates the shape of the RRC filter to accommodate the RBW filter. The effectiveness of this compensation is summarized in three ways:


- White noise in Adj Ch: The compensated RRC filter nominally has no errors if the adjacent channel has a spectrum that is flat across its width.
- TOI-induced spectrum: If the spectrum is due to third-order intermodulation, it has a distinctive shape. The computed errors of the compensated filter are -0.001 dB for the 100 kHz RBW used for UE testing with the IBW method. It is also -0.001 dB for the 390 kHz RBW used with the Fast method, and 0.000 dB for the 27 kHz RBW filter used for BTS testing with the Filtered IBW method. The worst error for RBWs between these extremes is 0.05 dB for a 330 kHz RBW filter.
- rms CW error: This error is a measure of the error in measuring a CW-like spurious component. It is evaluated by computing the root of the mean of the square of the power error across all frequencies within the adjacent channel. The computed rms error of the compensated filter is 0.012 dB for the 100 kHz RBW used for UE testing with the IBW method. It is 0.034 dB for the 390 kHz RBW used with the Fast method and 0.000 dB for the 27 kHz RBW filter used for BTS testing. The worst error for RBWs between 27 kHz and 470 kHz is 0.057 dB for a 430 kHz RBW filter.

Description	Specifications	Supplemental Information
Case: Radio Std = IS-95 or J-STD-008 Method ACPR Relative Accuracy Offsets < 750 kHz ^b Offsets > 1.98 MHz ^c	±0.08 dB ±0.10 dB	RBW method ^a

a. The RBW method measures the power in the adjacent channels within the defined resolution bandwidth. The noise bandwidth of the RBW filter is nominally 1.055 times the 3.01 dB bandwidth. Therefore, the RBW method will nominally read 0.23 dB higher adjacent channel power than would a measurement using the integration bandwidth method, because the noise bandwidth of the integration bandwidth measurement is equal to that integration bandwidth. For cdmaOne ACPR measurements using the RBW method, the main channel is measured in a 3 MHz RBW, which does not respond to all the power in the carrier. Therefore, the carrier power is compensated by the expected under-response of the filter to a full width signal, of 0.15 dB. But the adjacent channel power is not compensated for the noise bandwidth effect. The reason the adjacent channel is not compensated is subtle. The RBW method of measuring ACPR is very similar to the preferred method of making measurements for compliance with FCC requirements, the source of the specifications for the cdmaOne Spur Close specifications. ACPR is a spot measurement of Spur Close, and thus is best done with the RBW method, even though the results will disagree by 0.23 dB from the measurement made with a rectangular passband.

b. The specified ACPR accuracy applies if the measured ACPR substantially exceeds the analyzer dynamic range at the specified offset. When this condition is not met, there are additional errors due to the addition of analyzer spectral components to UUT spectral components. In the worst case at these offsets, the analyzer spectral components are all coherent with the UUT components; in a more typical case, one third of the analyzer spectral power will be coherent with the distortion components in the UUT. Coherent means that the phases of the UUT distortion components and the analyzer distortion components are in a fixed relationship, and could be perfectly in-phase. This coherence is not intuitive to many users, because the signals themselves are usually pseudo-random; nonetheless, they can be coherent. When the analyzer components are 100 % coherent with the UUT components, the errors add in a voltage sense. That error is a function of the signal (UUT ACPR) to noise (analyzer ACPR dynamic range limitation) ratio, SN, in decibels. The function is $\text{error} = 20 \times \log(1 + 10^{(-\text{SN}/20)})$. For example, if the UUT ACPR is -62 dB and the measurement floor is -82 dB, the SN is 20 dB and the error due to adding the analyzer distortion to that of the UUT is 0.83 dB.

c. As in the previous footnote, the specified ACPR accuracy applies if the ACPR measured substantially exceeds the analyzer dynamic range at the specified offset. When this condition is not met, there are additional errors due to the addition of analyzer spectral components to UUT spectral components. Unlike the situation in footnote b, though, the spectral components from the analyzer will be noncoherent with the components from the UUT. Therefore, the errors add in a power sense. The error is a function of the signal (UUT ACPR) to noise (analyzer ACPR dynamic range limitation) ratio, SN, in decibels. The function is $\text{error} = 10 \times \log(1 + 10^{(-\text{SN}/10)})$. For example, if the UUT ACPR is -75 dB and the measurement floor is -85 dB, the SN ratio is 10 dB and the error due to adding the analyzer's noise to that of the UUT is 0.41 dB.

a. Observation conditions for ACP speed:

Display Off, signal is Test Model 1 with 64 DPCH, Method set to Fast. Measured with an IBM compatible PC with a 3 GHz Pentium 4 running Windows XP Professional Version 2002. The communications medium was PCI GPIB IEEE 488.2. The Test Application Language was .NET – C#. The Application Communication Layer was Agilent T&M Programmer's Toolkit For Visual Studio (Version 1.1), Agilent I/O Libraries (Version M.01.01.41_beta).

Description	Specifications	Supplemental Information																									
Multi-Carrier Adjacent Channel Power																											
Case: Radio Std = 3GPP W-CDMA		UUT ACPR Range	MLOptb																								
ACPR Dynamic Range 5 MHz offset Two carriers		RRC weighted, 3.84 MHz noise bandwidth																									
ACPR Accuracy Two carriers 5 MHz offset, -48 dBc ACPR		-70 dB (nominal)																									
ACPR Accuracy 4 carriers		±0.42 dB (nominal)																									
<table border="1" data-bbox="197 732 665 844"> <thead> <tr> <th>Radio</th> <th>Offset</th> <th>Cohera</th> <th>NC</th> </tr> </thead> <tbody> <tr> <td>BTS</td> <td>5 MHz</td> <td>no</td> <td>Off</td> </tr> <tr> <td>BTS</td> <td>5 MHz</td> <td>no</td> <td>On</td> </tr> </tbody> </table>	Radio	Offset	Cohera	NC	BTS	5 MHz	no	Off	BTS	5 MHz	no	On	<table border="1" data-bbox="665 732 899 844"> <thead> <tr> <th>Radio</th> <th>Offset</th> <th>Cohera</th> <th>NC</th> </tr> </thead> <tbody> <tr> <td>BTS</td> <td>5 MHz</td> <td>no</td> <td>Off</td> </tr> <tr> <td>BTS</td> <td>5 MHz</td> <td>no</td> <td>On</td> </tr> </tbody> </table>	Radio	Offset	Cohera	NC	BTS	5 MHz	no	Off	BTS	5 MHz	no	On	UUT ACPR Range	MLOptb
Radio	Offset	Cohera	NC																								
BTS	5 MHz	no	Off																								
BTS	5 MHz	no	On																								
Radio	Offset	Cohera	NC																								
BTS	5 MHz	no	Off																								
BTS	5 MHz	no	On																								
		±0.39 dB	-42 to -48 dB																								
		±0.15 dB	-42 to -48 dB																								
ACPR Dynamic Range 4 carriers 5 MHz offset Noise Correction (NC) off Noise Correction (NC) on		Nominal DR	Nominal MLOptb																								
		-64 dB	-18 dBm																								
		-72 dB	-21 dBm																								

- a. Coher = no means that the specified accuracy only applies when the distortions of the device under test are not coherent with the third-order distortions of the analyzer. Incoherence is often the case with advanced multicarrier amplifiers built with compensations and predistortions that mostly eliminate coherent third-order effects in the amplifier.
- b. Optimum mixer level (MLOpt). The mixer level is given by the average power of the sum of the four carriers minus the input attenuation.

Description	Specifications	Supplemental Information
Power Statistics CCDF Histogram Resolution ^a	0.01 dB	

Description	Specifications	Supplemental Information
Burst Power Methods Results		<ul style="list-style-type: none"> • Power above threshold • Power within burst width • Output power, average • Output power, single burst • Maximum power • Minimum power within burst • Burst width

a. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of a histogram of the power envelope. The width of the amplitude bins used by the histogram is the histogram resolution. The resolution of the CCDF will be the same as the width of those bins.

Description	Specifications	Supplemental Information
Spurious Emissions		Table-driven spurious signals; search across regions
Case: Radio Std = 3GPP W-CDMA		
Dynamic Range 1-3.6 GHz ^a	95.3 dB	100.3 dB (typical)
Sensitivity, absolute 1-3.6 GHz	-84.4 dBm	-89.4 dBm (typical)
Accuracy Attenuation = 10 dB		± 0.36 dB (95 th Percentile)
Frequency Range 20 Hz to 3.6 GHz		± 1.17 dB (95 th Percentile)
3.5 GHz to 8.4 GHz		± 1.54 dB (95 th Percentile)
8.3 GHz to 13.6 GHz		

a. The dynamic is specified with the mixer level at +3 dBm, where up to 1 dB of compression can occur, degrading accuracy by 1 dB.

Description	Specifications	Supplemental Information
Spectrum Emission Mask		Table-driven spurious signals; measurement near carriers
Case: Radio Std = cdma2000		
Dynamic Range, relative 750 kHz offset ^{ab}	78.9 dB	85.0 dB (typical)
Sensitivity, absolute 750 kHz offset ^c	-99.7 dBm	-104.7 dBm (typical)
Accuracy 750 kHz offset		
Relative ^d	±0.11 dB	
Absolute ^e 20 – 30 °C	±0.83 dB	±0.34 dB (95th Percentile $\approx 2\sigma$)
Case: Radio Std = 3GPP W-CDMA		
Dynamic Range, relative 2.515 MHz offset ^{af}	81.9 dB	88.2 dB (typical)
Sensitivity, absolute 2.515 MHz offset ^c	-99.7 dBm	-104.7 dBm (typical)
Accuracy 2.515 MHz offset		
Relative ^d	±0.12 dB	
Absolute ^g 20 – 30 °C	±0.86 dB	±0.34 dB (95 th Percentile $\approx 2\sigma$)

- The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 30 kHz RBW.
- This dynamic range specification applies for the optimum mixer level, which is about -18 dBm. Mixer level is defined to be the average input power minus the input attenuation.
- The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 30 kHz RBW, at a center frequency of 2 GHz.
- The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.
- The absolute accuracy of SEM measurement is the same as the absolute accuracy of the spectrum analyzer. See Absolute Amplitude Accuracy on page 25 for more information. The numbers shown are for 0 – 3.6 GHz, with attenuation set to 10 dB.
- This dynamic range specification applies for the optimum mixer level, which is about -16 dBm. Mixer level is defined to be the average input power minus the input attenuation.
- The absolute accuracy of SEM measurement is the same as the absolute accuracy of the spectrum analyzer. See Absolute Amplitude Accuracy on page 25 for more information. The numbers shown are for 0 – 3.6 GHz, with attenuation set to 10 dB.

Options

The following options and applications affect instrument specifications.

Option 503:	Frequency range, 20 Hz to 3.6 GHz
Option 508:	Frequency range, 20 Hz to 8.4 GHz
Option 513:	Frequency range, 20 Hz to 13.6 GHz
Option 526:	Frequency range, 20 Hz to 26.5 GHz
Option B25:	Analysis bandwidth, 25 MHz
Option EA3:	Electronic attenuator, 3.6 GHz
Option P03:	Preamplifier, 3.6 GHz
Option P08:	Preamplifier, 8.4 GHz
Option P13:	Preamplifier, 13.6 GHz
Option P26:	Preamplifier, 26.5 GHz
I/Q Analyzer:	I/Q Analyzer measurement application
Option PFR:	Precision frequency reference
N9073A-1FP:	W-CDMA measurement application
N9073A-2FP:	HSDPA/HSUPA measurement application
N9075A:	802.16 OFDMA measurement application

General

Description	Specifications	Supplemental Information
Calibration Cycle	1 year	

Description	Specifications	Supplemental Information
Temperature Range		
Operating	5 to 50 °C	
Storage	–40 to 65 °C	
Altitude	3000 meters (approx. 10,000 feet)	

Description	Specifications	Supplemental Information
Environmental and Military Specifications		Test methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3.

Description	Specifications
EMC	Complies with European EMC Directive 89/336/EEC, amended by 93/68/EEC –IEC/EN 61326 –CISPR Pub 11 Group 1, Class A –AS/NZS CISPR 11:2002 –ICES/NMB-001

Acoustic Noise Emission/Geraeuschemission	
LpA <70 dB	LpA <70 dB
Operator position	Am Arbeitsplatz
Normal position	Normaler Betrieb
Per ISO 7779	Nach DIN 45635 t.19

Description	Specifications
Safety	Complies with European Low Voltage Directive 73/23/EEC, amended by 93/68/EEC -IEC/EN 61010-1 -Canada: CSA C22.2 No. 61010-1 -USA: UL 61010-1

Description	Specification	Supplemental Information
Power Requirements		
Voltage (low range)	100/120 V	
Frequency	50/60 Hz	
Voltage (high range)	220/240 V	
Frequency	50/60 Hz	
Power Consumption, On	<260 W	
Power Consumption, Standby	<20 W	Standby power not supplied to frequency reference oscillator.

Description	Specifications	Supplemental Information
Measurement Speed		Nominal
Local measurement and display update rate ^a		
Sweep points = 1001		11 ms (90/s)
Remote measurement and LAN transfer rate ^{ab}		
Sweep points = 1001		4 ms (250/s)
Marker Peak Search		5 ms
Center Frequency Tune and Transfer (RF)		51 ms
Center Frequency Tune and Transfer (μW)		86 ms
Measurement/Mode Switching		75 ms
W-CDMA ACLR measurement time		See page 51
Measurement Time vs. Span		See page 16

Description	Specifications	Supplemental Information
Display		
Resolution	1024 × 768	XGA
Size		213 mm (8.4 in) diagonal (nominal)
Scale		
Log Scale	0.1, 0.2, 0.3...1.0, 2.0, 3.0...20 dB per division	
Linear Scale	10 % of reference level per division	
Units	dBm, dBmV, dBmA, Watts, Volts, Amps, dBμV, dBμA	

a. Factory preset, fixed center frequency, RBW = 1 MHz, and span >10 MHz and ≤ 600 MHz, and stop frequency ≤ 3.6 GHz, Auto Align Off.

b. Phase Noise Optimization set to Fast Tuning, Display Off, 32 bit integer format, markers Off, single sweep, measured with IBM compatible PC with 2.99 GHz Pentium® 4 with 2 GB RAM running Windows® XP, Agilent I/O Libraries Suite Version 14.1, one meter GPIB cable, National Instruments PCI-GPIC Card and NI-488.2 DLL.

Description	Specifications	Supplemental Information
Data Storage Internal External	Integrated 40 GB HDD	15 GB available on primary partition for applications and secondary data. 6 GB available on separate partition for user data.

Description	Specifications	Supplemental Information
Weight <i>(without options)</i> Net Shipping		16 kg (35 lbs) (nominal) 28 kg (62 lbs) (nominal)
Cabinet Dimensions Height Width Length	177 mm (7.0 in) 426 mm (16.8 in) 368 mm (14.5 in)	Cabinet dimensions exclude front and rear protrusions.

Inputs/Outputs

Front Panel

Description	Specifications	Supplemental Information
RF Input Connector Standard Impedance	Type-N female	50 Ω (nominal)

Description	Specifications	Supplemental Information
Probe Power Voltage/Current		+15 Vdc, ±7 % at 150 mA max (nominal) -12.6 Vdc, ±10 % at 150 mA max (nominal) GND

Description	Specifications	Supplemental Information
USB 2.0 Ports Master (2 ports) Connector Output Current	USB Type "A" (female)	0.5 A (nominal)

Description	Specifications	Supplemental Information
Headphone Jack Connector Output Power	3.5 mm (1/8 inch) miniature audio jack	Not available for demodulation. Available for Windows based applications. 90 mW per channel into 16 Ω (nominal)

Rear Panel

Description	Specifications	Supplemental Information
10 MHz Out Connector Impedance Output Amplitude Output Configuration Frequency	BNC female AC coupled, sinusoidal 10 MHz \pm (10 MHz \times frequency reference accuracy)	50 Ω (nominal) ≥ 0 dBm (nominal)

Description	Specifications	Supplemental Information
Ext Ref In Connector Impedance Input Amplitude Range Input Frequency Lock range	BNC female 50 Ω (nominal) –5 to +10 dBm (nominal) 1 to 50 MHz (nominal) (selectable to 1 Hz resolution) $\pm 5 \times 10^{-6}$ of selected external reference input frequency	<i>Note:</i> Analyzer noise sidebands and spurious response performance may be affected by the quality of the external reference used.

Description	Specifications	Supplemental Information
Sync Connector	BNC female	Reserved for future use

Description	Specifications	Supplemental Information
Trigger Inputs Trigger 1 In, Trigger 2 In Connector Impedance Trigger Level Range	BNC female 10 k Ω (nominal) –5 to +5 V	Either trigger source may be selected. 1.5 V (TTL) factory preset

Description	Specifications	Supplemental Information
Trigger Outputs Trigger 1 Out, Trigger 2 Out Connector Impedance Level	BNC female	50 Ω (nominal) 5 V TTL

Description	Specifications	Supplemental Information
Monitor Output Connector Format Resolution	VGA compatible, 15-pin mini D-SUB 1024 × 768	XGA (60 Hz vertical sync rates, non-interlaced) Analog RGB

Description	Specifications	Supplemental Information
Noise Source Drive +28 V (Pulsed) Connector	BNC female	Reserved for future use

Description	Specifications	Supplemental Information
SNS Series Noise Source		Reserved for future use with Agilent Technologies SNS Series noise sources

Description	Specifications	Supplemental Information
Digital Bus Connector	MDR-80	Reserved for future use

Description	Specifications	Supplemental Information
Analog Out Connector	BNC female	Reserved for future use

Description	Specifications	Supplemental Information
USB 2.0 Ports Master (4 ports) Connector Output Current	USB Type "A" (female)	0.5 A (nominal)
Slave (1 port) Connector Output Current	USB Type "B" (female)	0.5 A (nominal)

Description	Specifications	Supplemental Information
GPIB Interface Connector GPIB Codes	IEEE-488 bus connector	SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3 and C28, DT1, L4, C0
LAN TCP/IP Interface	RJ45 Ethertwist	100BaseT

Regulatory Information

This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 61010 2nd ed, and 664 respectively.

This product has been designed and tested in accordance with accepted industry standards, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.

The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven). This product complies with all relevant directives.

ICES/NMB-001

"This ISM device complies with Canadian ICES-001."

"Cet appareil ISM est conforme a la norme NMB du Canada."

ISM 1-A
(GRP.1 CLASS A)

This is a symbol of an Industrial Scientific and Medical Group 1 Class A product. (CISPR 11, Clause 4)

The CSA mark is the Canadian Standards Association. This product complies with the relevant safety requirements.

The C-Tick mark is a registered trademark of the Australian/New Zealand Spectrum Management Agency. This product complies with the relevant EMC regulations.

This symbol indicates separate collection for electrical and electronic equipment mandated under EU law as of August 13, 2005. All electric and electronic equipment are required to be separated from normal waste for disposal (Reference WEEE Directive 2002/96/EC).

To return unwanted products, contact your local Agilent office, or see <http://www.agilent.com/environment/product/index.shtml> for more information.

Declaration of Conformity

A copy of the Manufacturer's European Declaration of Conformity for this instrument can be obtained by contacting your local Agilent Technologies sales representative.

2 *Option B25 – Analysis Bandwidth, 25 MHz*

This chapter contains specifications for the Agilent Technologies MXA Signal Analyzer *Option B25 Analysis Bandwidth, 25 MHz*.

Specifications Affected by Analysis Bandwidth

Specification Name	Information
IF Frequency Response	See “Frequency Response” on page 21 of the core specifications.
IF Phase Linearity	See “IF Phase Linearity” on page 93 of I/Q Analyzer specifications.

3 *Option EA3 – Electronic Attenuator, 3.6 GHz*

This chapter contains specifications for the Agilent MXA Signal Analyzer *Option EA3* Electronic Attenuator, 3.6 GHz.

Specifications Affected by Electronic Attenuator

Specification Name	Information
Frequency Range	See “Range (Frequency and Attenuation)” specifications in this chapter.
1 dB Gain Compression Point	See “Distortions and Noise” specifications in this chapter.
Displayed Average Noise Level	See “Distortions and Noise” specifications in this chapter.
Frequency Response	See specifications in this chapter.
Attenuator Switching Uncertainty	The recommended operation of the electronic attenuator is with the reference setting (10 dB) of the mechanical attenuator. In this operating condition, the Attenuator Switching Uncertainty specification of the mechanical attenuator in the core specifications does not apply, and any switching uncertainty of the electronic attenuator is included within the “Electronic Attenuator Switching Uncertainty” on page 72 this chapter.
Absolute Amplitude Accuracy	Use “Frequency” specifications from this chapter and the formula from the “Absolute Amplitude Accuracy” on page 25 of the core specifications.
Second Harmonic Distortion	See “Distortions and Noise” specifications in this chapter.
Third Order Intermodulation Distortion	See “Distortions and Noise” specifications in this chapter.

Other Electronic Attenuator Specifications

Description	Specifications	Supplemental Information
Range (Frequency and Attenuation)		
Frequency Range	20 Hz to 3.6 GHz	
Attenuation Range		
Electronic Attenuator Range	0 to 24 dB, 1 dB steps	
Calibrated Range	0 to 24 dB, 2 dB steps	Electronic attenuator is calibrated with 10 dB mechanical attenuation
Full Attenuation Range	0 to 94 dB, 1 dB steps	Sum of electronic and mechanical attenuation

Description	Specifications	Supplemental Information
Distortions and Noise		
1 dB Gain Compression Point		When using the electronic attenuator, the mechanical attenuator is also in-circuit. The full mechanical attenuator range is available ^a . The 1 dB compression point will be nominally higher with the electronic attenuator “Enabled” than with it not Enabled by the loss ^b , except with high settings of electronic attenuation ^c .
Displayed Average Noise Level		Instrument Displayed Average Noise Level will nominally be worse with the electronic attenuator “Enabled” than with it not Enabled by the loss ^b .
Second Harmonic Distortion		Instrument Second Harmonic Distortion will nominally be better in terms of the second harmonic intercept (SHI) with the electronic attenuator “Enabled” than with it not Enabled by the loss ^b .
Third-order Intermodulation Distortion		Instrument TOI will nominally be better with the electronic attenuator “Enabled” than with it not Enabled by the loss ^b except for the combination of high attenuation setting and high signal frequency ^d .

- a. The electronic attenuator is calibrated for its frequency response only with the mechanical attenuator set to its preferred setting of 10 dB.
- b. The loss of the electronic attenuator is nominally given by its attenuation plus its excess loss. That excess loss is nominally 2 dB from 0 – 500 MHz and increases by nominally another 1 dB/GHz for frequencies above 500 MHz.
- c. An additional compression mechanism is present at high electronic attenuator settings. The mechanism gives nominally 1 dB compression at +20 dBm at the internal electronic attenuator input. The compression threshold at the RF input is higher than that at the internal electronic attenuator input by the mechanical attenuation. The mechanism has negligible effect for electronic attenuations of 0 through 14 dB.
- d. The TOI performance improvement due to electronic attenuator loss is limited at high frequencies, such that the TOI reaches a limit of nominally +45 dBm at 3.6 GHz, with the preferred mechanical attenuator setting of 10 dB, and the maximum electronic attenuation of 24 dB. The TOI will change in direct proportion to changes in mechanical attenuation.

Specifications Guide
Option EA3 – Electronic Attenuator, 3.6 GHz

Description	Specifications		Supplemental Information
Frequency Response			
Maximum error relative to reference condition (50 MHz)			
Attenuation = 4 to 24 dB, even steps	20 to 30 °C	5 to 50 °C	95 th Percentile ($\approx 2\sigma$)
20 Hz to 10 MHz	± 0.70 dB	± 0.90 dB	± 0.32 dB
10 MHz to 2.2 GHz	± 0.46 dB	± 0.58 dB	± 0.18 dB
2.2 GHz to 3.6 GHz	± 0.53 dB	± 0.67 dB	± 0.20 dB
Attenuation = 0, 1, 2 and odd steps, 3 to 23 dB			
10 MHz to 3.6 GHz			± 0.26 dB

Description	Specifications	Supplemental Information
Electronic Attenuator Switching Uncertainty		
Error relative to reference condition (50 MHz, 10 dB mechanical attenuation, 10 dB electronic attenuation)		
Attenuation = 0 to 24 dB		
20 Hz to 3.6 GHz	See note ^a	

a. The specification is ± 0.14 dB. Note that this small relative uncertainty does not apply in estimating absolute amplitude accuracy. It is included within the absolute amplitude accuracy for measurements done with the electronic attenuator. (Measurements made *without* the electronic attenuator are treated differently; the absolute amplitude accuracy specification for these measurements does not include attenuator switching uncertainty.)

4 Options *P03, P08, P13 and P26* - Preamplifiers

This chapter contains specifications for the MXA Signal Analyzer *Option P03, P08, P13 and P26* Preamplifiers.

Specifications Affected by Preamp

Specification Name	Information
Frequency Range	See “Frequency Range” on page 10 of the core specifications.
Nominal Dynamic Range vs. Offset Frequency vs. RBW	Does not apply with Preamp On.
Measurement Range	The measurement range depends on DANL. See DANL specifications in this chapter.
Gain Compression	See specifications in this chapter.
DANL	See specifications in this chapter.
Frequency Response	See specifications in this chapter.
Absolute Amplitude Accuracy	See “Absolute Amplitude Accuracy” on page 25 of the core specifications.
RF Input VSWR	See plot in this chapter.
Display Scale Fidelity	See “Display Scale Fidelity” on page 30 of the core specifications.
Second Harmonic Distortion	See specifications in this chapter.
Third Order Intermodulation Distortion	See specifications in this chapter.
Other Input Related Spurious	See “Spurious Responses” on page 36 of the core specifications.
Dynamic Range	See plot in this chapter.
Gain	See “Preamp” specifications in this chapter.
Noise Figure	See “Preamp” specifications in this chapter.

Other Preamp Specifications

Description	Specifications	Supplemental Information
Preamp (Options P03, P08, P13, P26)^a		
Gain		Maximum ^b
100 kHz to 3.6 GHz		+20 dB (nominal)
3.6 GHz to 26.5 GHz		+35 dB (nominal)
Noise figure		
100 kHz to 3.6 GHz		11 dB (nominal)
3.6 to 8.4 GHz		9 dB (nominal)
8.4 GHz to 13.6 GHz		10 dB (nominal)
13.6 to 26.5 GHz		15 dB (nominal)

- a. The preamp follows the input attenuator, AC/DC coupling switch, and precedes the input mixer. In low-band, it follows the 3.6 GHz low-pass filter; in high-band, it precedes the preselector.
- b. Preamp Gain directly affects distortion and noise performance, but it also affects the range of levels that are free of final IF overload. The user interface has a designed relationship between input attenuation and reference level to prevent on-screen signal levels from causing final IF overloads. That design is based on the maximum preamp gains shown. Actual preamp gains are modestly lower, by up to nominally 5 dB for frequencies from 100 kHz to 3.6 GHz, and by up to nominally 10 dB for frequencies from 3.6 to 26.5 GHz.

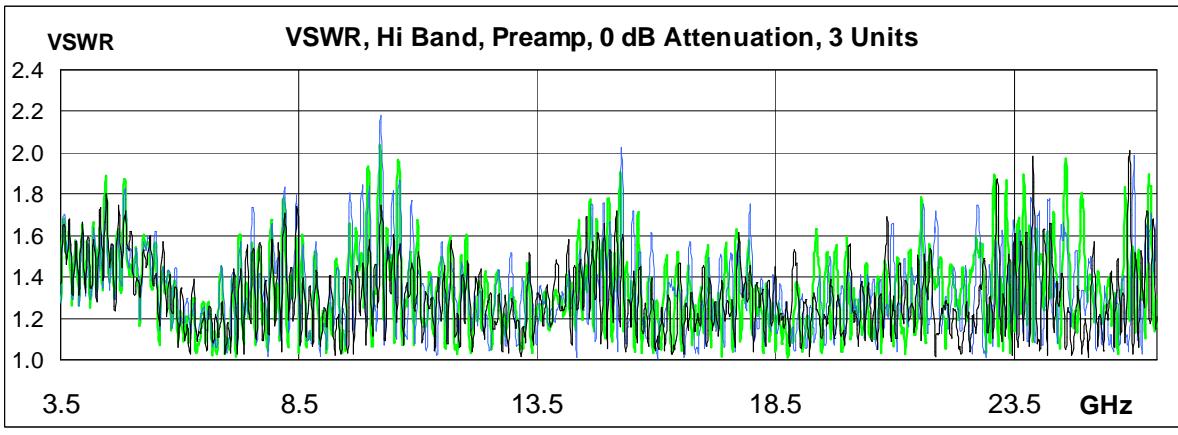
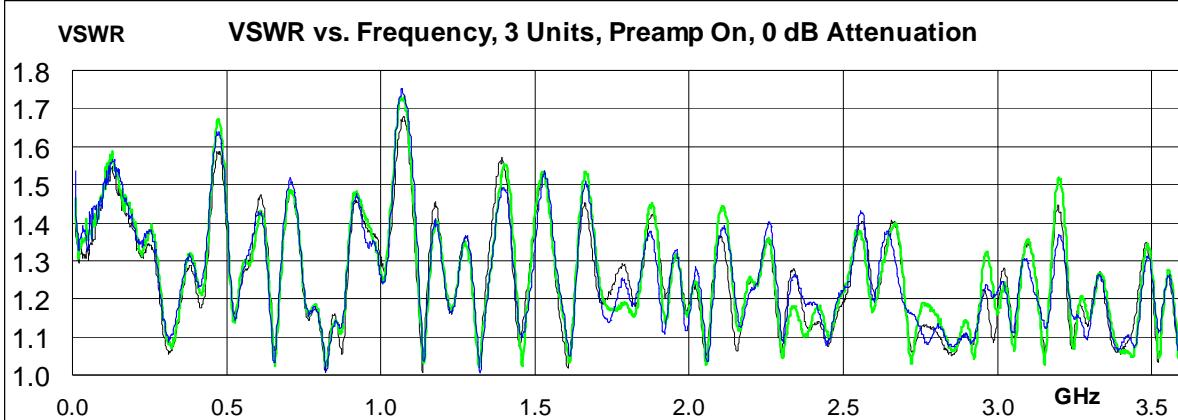
Description	Specifications	Supplemental Information
<p>1 dB Gain Compression Point (Two-tone)^{ab}</p> <p>Preamp On (<i>Options P03, P08, P13, P26</i>)</p> <p>Maximum power at the preamp^c for 1 dB gain compression</p> <p>10 MHz to 3.6 GHz</p> <p>3.6 GHz to 26.5 GHz</p> <p>Tone spacing 100 kHz to 20 MHz</p> <p>Tone spacing > 70 MHz</p>		<p>-10 dBm (nominal)</p> <p>-26 dBm (nominal)</p> <p>-16 dBm (nominal)</p>

- a. Large signals, even at frequencies not shown on the screen, can cause the analyzer to mismeasure on-screen signals because of two-tone gain compression. This specification tells how large an interfering signal must be in order to cause a 1 dB change in an on-screen signal.
- b. Reference level and off-screen performance: The reference level (RL) behavior differs from previous analyzers (except PSA) in a way that makes the MXA more flexible. In previous analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in previous analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarithmic amplifier in the MXA, however, is implemented digitally such that the range and resolution greatly exceed other instrument limitations. Because of this, a MXA can make measurements largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a measurement function, a marker can read out results that are off-screen, either above or below, without any change in accuracy. The only exception to the independence of RL and the way in which the measurement is performed is in the input attenuation setting: When the input attenuation is set to auto, the rules for the determination of the input attenuation include dependence on the reference level. Because the input attenuation setting controls the tradeoff between large signal behaviors (third-order intermodulation and compression) and small signal effects (noise), the measurement results can change with RL changes when the input attenuation is set to auto.
- c. Total power at the preamp (dBm) = total power at the input (dBm) – input attenuation (dB).

Specifications Guide
Options P03, P08, P13 and P26 - Preamplifiers

Description	Specifications		Supplemental Information
Displayed Average Noise Level (DANL) – Preamp On (Options P03, P08, P13, P26)^a	Input terminated, Sample or Average detector Averaging type = Log 0 dB input attenuation IF Gain = Any setting		
1 Hz Resolution Bandwidth	20 to 30 °C 5 to 50 °C		Typical
Preamp On			
<i>Option P03, P08, P13, P26</i>			
100 kHz to 1 MHz ^b			-149 dBm
1 MHz to 10 MHz	-161 dBm	-159 dBm	-163 dBm
10 MHz to 2.1 GHz	-163 dBm	-161 dBm	-166 dBm
2.1 GHz to 3.6 GHz	-162 dBm	-160 dBm	-164 dBm
<i>Option P08, P13, P26</i>			
3.6 GHz to 8.4 GHz	-162 dBm	-160 dBm	-166 dBm
<i>Option P13, P26</i>			
8.4 GHz to 13.6 GHz	-162 dBm	-160 dBm	-165 dBm
<i>Option P26</i>			
13.6 GHz to 17.1 GHz	-159 dBm	-157 dBm	-163 dBm
17.1 GHz to 20.0 GHz	-157 dBm	-154 dBm	-161 dBm
20.0 GHz to 26.5 GHz	-152 dBm	-149 dBm	-157 dBm

a. DANL for zero span and swept is normalized in two ways and for two reasons. DANL is measured in a 1 kHz RBW and normalized to the narrowest available RBW, because the noise figure does not depend on RBW and 1 kHz measurements are faster. The second normalization is that DANL is measured with 10 dB input attenuation and normalized to the 0 dB input attenuation case, because that makes DANL and third order intermodulation test conditions congruent, allowing accurate dynamic range estimation for the analyzer.

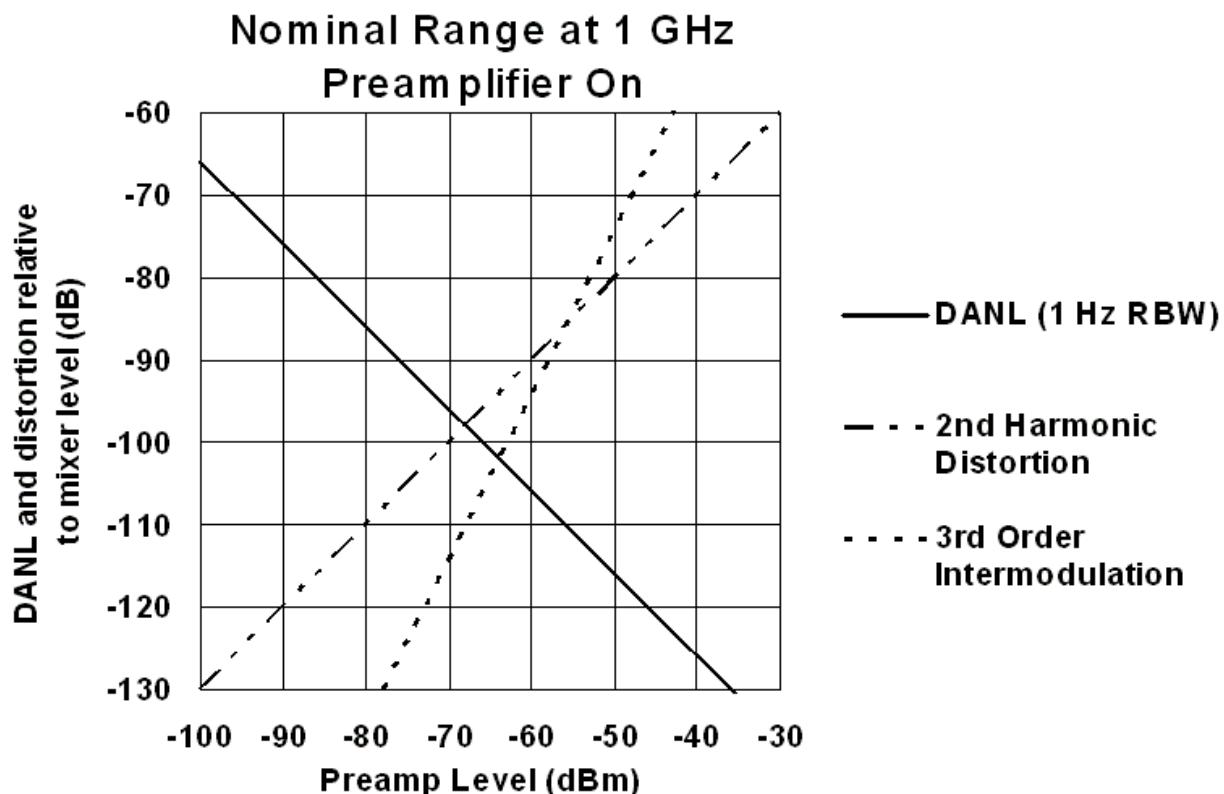


b. Specifications apply only when the Phase Noise Optimization control is set to "Best Phase Noise at offset > 30 kHz."

Specifications Guide
Options P03, P08, P13 and P26 - Preamplifiers

Description	Specifications		Supplemental Information
Frequency Response – Preamp On (Options P03, P08, P13, P26)			
<p>Maximum error relative to reference condition (50 MHz)</p> <p>Input attenuation 0 dB</p> <p>Swept operation^a</p>			
	20 to 30 °C 5 to 50 °C		95th Percentile ($\approx 2 \sigma$)
100 kHz to 3.6 GHz ^b	± 0.75 dB	± 1.0 dB	± 0.28 dB
3.5 to 8.4 GHz ^{cd}	± 2.0 dB	± 2.7 dB	± 0.53 dB
8.8 to 13.6 GHz ^{cd}	± 2.3 dB	± 2.9 dB	± 0.60 dB
13.5 to 17.1 GHz ^{cd}	± 2.5 dB	± 3.3 dB	± 0.81 dB
17.0 to 22.0 GHz ^{cd}	± 2.5 dB	± 3.3 dB	± 0.81 dB
22.0 to 26.5 GHz ^{cd}	± 3.5 dB	± 4.5 dB	± 1.25 dB

- a. For Sweep Type = FFT, add the RF flatness errors of this table to the IF Frequency Response errors. An additional error source, the error in switching between swept and FFT sweep types, is nominally ± 0.01 dB and is included within the “Absolute Amplitude Error” specifications.
- b. Electronic attenuator (*Option EA3*) may not be used with preamp on.
- c. Specifications for frequencies > 3.5 GHz apply for sweep rates < 100 MHz/ms.
- d. Preselector centering applied.

Nominal VSWR – Preamp On (Plot)


Specifications Guide
Options P03, P08, P13 and P26 - Preamplifiers

Description	Specifications	Supplemental Information		
Second Harmonic Distortion		Preamp Level ^a	Distortion (nominal)	SHI ^b (nominal)
Preamp On (<i>Options P03, P08, P13, P26</i>)				
Source Frequency				
10 MHz to 1.8 GHz		−45 dBm	−78 dBc	+33 dBm
1.8 GHz to 13.25 GHz		−50 dBm	−60 dBc	+10 dBm

Description	Specifications	Supplemental Information
Third Order Intermodulation Distortion		
Tone separation >15 kHz		
Sweep type <i>not</i> set to FFT		
Preamp On (<i>Options P03, P08, P13, P26</i>)		TOI ^c (nominal)
10 to 500 MHz		+4 dBm
500 MHz to 3.6 GHz		+5 dBm
3.6 GHz to 26.5 GHz		−15 dBm

a. Preamp level = Input Level – Input Attenuation.
b. SHI = second harmonic intercept. The SHI is given by the mixer power in dBm minus the second harmonic distortion level relative to the mixer tone in dBc. The measurement is made with a −11 dBm tone at the input mixer.
c. TOI = third order intercept. The TOI is given by the mixer tone level (in dBm) minus (distortion/2) where distortion is the relative level of the distortion tones in dBc.

Nominal Dynamic Range at 1 GHz, Preamp On (Plot)

5 *Option PFR* – Precision Frequency Reference

This chapter contains specifications for the Agilent Technologies MXA Signal Analyzer *Option PFR* Precision Frequency Reference.

Specifications Affected by Precision Frequency Reference

Specification Name	Information
Precision Frequency Reference	See “Precision Frequency Reference” on page 12 in core specifications.

6 802.16 OFDMA Measurement Application

This chapter contains specifications for the MXA Signal Analyzer N9075A 802.16 OFDMA measurement application

Additional Definitions and Requirements

Because digital communications signals are noise-like, all measurements will have variations. The specifications apply only with adequate averaging to remove those variations. Information bandwidth is assumed to be 5, 8.75 or 10 MHz unless otherwise explicitly stated.

Amplitude

Description	Specifications	Supplemental Information
Channel Power Minimum power at RF Input Absolute power accuracy ^a 20 to 30 °C Atten = 10 dB		–30 dBm (nominal) ±0.30 dB (nominal)

Description	Specifications	Supplemental Information
Power Statistics CCDF Histogram Resolution	0.01 dB ^b	

- a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that measurement floor contribution is negligible.
- b. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of the histogram of the power envelope. The width of the amplitude bins used by the histogram is the histogram resolution. The resolution of the CCDF will be the same as the width of those bins.

Description	Specifications	Supplemental Information
Spurious Emissions Accuracy Attenuation = 10dB Frequency Range 20 Hz to 3.6 GHz 3.5 GHz to 8.4 GHz 8.3 GHz to 13.6 GHz		± 0.36 dB (nominal) ± 1.17 dB (nominal) ± 1.54 dB (nominal)

Description	Specifications	Supplemental Information
Modulation Analysis $-25 \text{ dBm} \leq \text{ML}^a \leq -15 \text{ dBm}$ 20 to 30 °C EVM Floor		RF input power range is accordingly determined to meet Mixer level. -44 dB (nominal)

Frequency

Description	Specifications	Supplemental Information
In-Band Frequency Range	< 3.6 GHz	

a. ML (mixer level) is RF input power minus attenuation

7 I/Q Analyzer

This chapter contains specifications for the MXA Signal Analyzer *I/Q Analyzer* application.

Specifications Affected by I/Q Analyzer

Specification Name	Information
Number of Frequency Display Trace Points (buckets)	Does not apply.
Resolution Bandwidth	See “Frequency” specifications in this chapter.
Video Bandwidth	Not available.
Clipping-to-Noise Dynamic Range	See “Clipping-to-Noise Dynamic Range” specifications in this chapter.
Resolution Bandwidth Switching Uncertainty	Not specified because it is negligible.
Available Detectors	Does not apply.
Spurious Responses	See “Spurious Responses” on page 36 of core specifications in addition to “IF Spurious Responses” in this chapter.
IF Amplitude Flatness	See “Absolute Amplitude Accuracy” on page 25 of core specifications.
IF Phase Linearity	See specifications in this chapter.
Data Acquisition	See specifications in this chapter.

Other I/Q Analyzer Specifications

Frequency

Description	Specifications	Supplemental Information
Frequency Range		
<i>Option 503</i>	20 Hz to 3.6 GHz	
<i>Option 508</i>	20 Hz to 8.4 GHz	
<i>Option 513</i>	20 Hz to 13.6 GHz	
<i>Option 526</i>	20 Hz to 26.5 GHz	
Frequency Span		
Range		
Standard instrument	10 Hz to 10 MHz	
<i>Option B25</i>	10 Hz to 25 MHz	
Resolution Bandwidth (Spectrum Measurement)		
Range		
Overall	100 mHz to 3 MHz	
Span = 25 MHz	3 kHz to 3 MHz	
Span = 1 MHz	50 Hz to 1 MHz	
Span = 10 kHz	1 Hz to 10 kHz	
Span = 100 Hz	100 mHz to 100 Hz	
Window Shapes	Flat Top, Uniform, Hanning, Hamming, Gaussian, Blackman, Blackman-Harris, Kaiser Bessel (K-B 70 dB, K-B 90 dB & K-B 110 dB)	
Analysis Bandwidth (Span) (Waveform Measurement)	10 Hz to 10 MHz 10 Hz to 25 MHz	Standard instrument <i>Option B25</i>

Description	Specifications	Supplemental Information
Clipping-to-Noise Dynamic Range^a		Excluding residuals and spurious responses
Clipping Level at Mixer		center frequency \geq 20 MHz
IF Gain = Low	-10 dBm	-8 dBm (nominal)
IF Gain = High	-20 dBm	-17.5 dBm (nominal)
Noise Density at Mixer at center frequency ^b	$(\text{DANL}^{\text{c}} + \text{IFGainEffect}^{\text{d}}) + 2.25 \text{ dB}^{\text{e}}$	Example ^f

- a. This specification is defined to be the ratio of the clipping level (also known as “ADC Over Range”) to the noise density. In decibel units, it can be defined as $\text{clipping_level [dBm]} - \text{noise_density [dBm/Hz]}$; the result has units of dBfs/Hz (fs is “full scale”).
- b. The noise density depends on the input frequency. It is lowest for a broad range of input frequencies near the center frequency, and these specifications apply there. The noise density can increase toward the edges of the span. The effect is nominally well under 1 dB.
- c. The primary determining element in the noise density is the Displayed Average Noise Level, page 35.
- d. DANL is specified with the IF Gain set to High, which is the best case for DANL but not for Clipping-to-noise dynamic range. The core specifications Displayed Average Noise Level on page 35, gives a line entry on the excess noise added by using IF Gain = Low, and a footnote explaining how to combine the IF Gain noise with the DANL.
- e. DANL is specified for log averaging, not power averaging, and thus is 2.51 dB lower than the true noise density. It is also specified in the narrowest RBW, 1 Hz, which has a noise bandwidth slightly wider than 1 Hz. These two effects together add up to 2.25 dB.
- f. As an example computation, consider this: For the case where DANL = -151 dBm in 1 Hz, IF Gain = Low with an excess noise of -157.4 dBm, the total noise density computes to -147.9 dBm/Hz and the Clipping-to-noise ratio for a -10 dBm clipping level is -137.9 dBfs/Hz.

Description	Specifications	Supplemental Information
IF Spurious Response^a	Mixer Level ^b	Preamp Off ^c
IF second harmonic ^d		
Apparent Freq. (f)	Excitation Freq.	
Any on-screen f	$(f + fc + 22.5)/2$	-15 dBm
		Low
		-54 dBc (nominal)
		-25 dBm
		High
		-54 dBc (nominal)
IF conversion image ^e		
Apparent Freq. (f)	Excitation Freq.	
Any on-screen f	$2 * fc - f + 45$ MHz	-10 dBm
		Low
		-70 dBc (nominal)
		-20 dBm
		High
		-70 dBc (nominal)

- a. To save test time, the levels of these spurs are not warranted. However, the relationship between the spurious response and its excitation is described so the user can distinguish whether a questionable response is due to these mechanisms or is subject to the specifications in “Spurious Responses” in the core specifications. f is the apparent frequency of the spurious, f_c is the measurement center frequency.
- b. Mixer Level = Input Level – Input Attenuation.
- c. The spurious response specifications only apply with the preamp turned off. When the preamp is turned on, performance is nominally the same as long as the mixer level is interpreted to be: Mixer Level = Input Level – Input Attenuation – Preamp Gain
- d. IF second harmonic significant only for Pre-FFT BW \geq 10 MHz.
- e. IF conversion image significant only for Pre-FFT BW \geq 10 MHz.

Amplitude and Phase

Description	Specification	Supplemental Information
IF Amplitude Flatness		See "Absolute Amplitude Accuracy", page 25 of core specifications.

Description	Specification	Supplemental Information
IF Phase Linearity Relative to mean phase linearity		

Freq (GHz)	Span ^a (MHz)	Peak (nominal)	rms (nominal) ^b
≤ 3.6	≤ 10	±0.5 deg	0.2 deg
3.6 to 26.5	≤ 10	±1.5 deg	0.4 deg
≤ 3.6	> 10	±0.8 deg	0.2 deg
3.6 to 26.5	> 10	±2 deg	0.6 deg

Data Acquisition

Description	Specifications	Supplemental Information
Time Record Length	250,000 samples (max)	250,000 samples ≈ 2.78 ms at 25 MHz span
ADC Resolution	14 Bits	

- a. Spans greater than 10 MHz require *Option B25*.
- b. The listed performance is the r.m.s. of the phase deviation relative to the mean phase deviation from a linear phase condition, where the r.m.s. is computed over the range of offset frequencies and center frequencies shown.

8 W-CDMA Measurement Application

This chapter contains specifications for the MXA Signal Analyzer *N9073A* W-CDMA measurement application. It contains both *N9073A-1FP* W-CDMA and *N9073A-2FP* HSDPA/HSUPA measurement application.

Additional Definitions and Requirements

Because digital communications signals are noise-like, all measurements will have variations.
The specifications apply only with adequate averaging to remove those variations.
The specifications apply in the frequency range documented in In-Band Frequency Range.

Conformance with 3GPP TS 25.141 Base Station Requirements

Sub-clause	Name	3GPP Required Test Instrument Tolerance (as of 2006-03)	Instrument Tolerance Interval ^{abc}	Supplemental Information
Standard sections (Measurement Name)				
6.2.1	Maximum Output Power (Channel Power)	±0.7 dB (95 %)	±0.30 dB (95 %)	
6.2.2	CPICH Power Accuracy (Code Domain)	±0.8 dB (95 %)	±0.32 dB (95 %)	
6.3	Frequency Error (Modulation Accuracy)	±12 Hz (95 %)	±5 Hz (100 %)	Excluding timebase error
6.4.2	Power Control Steps ^d (Code Domain)			
	1 dB step	±0.1 dB (95 %)	±0.03 dB (100 %)	
6.4.3	Ten 1 dB steps	±0.1 dB (95 %)	±0.03 dB (100 %)	
	Power Dynamic Range	±1.1 dB (95 %)	±0.14 dB (100 %)	
6.4.4	Total Power Dynamic Range ^d (Code Domain)	±0.3 dB (95 %)	±0.06 dB (100 %)	
6.5.1	Occupied Bandwidth	±100 kHz (95 %)	±10 kHz (100 %)	
6.5.2.1	Spectrum Emission Mask	±1.5 dB (95 %)	±0.34 dB (95 %)	Absolute peak ^e
6.5.2.2	ACLR			
	5 MHz offset	±0.8 dB (95 %)	±0.49 dB (100 %)	
	10 MHz offset	±0.8 dB (95 %)	±0.44 dB (100 %)	
6.5.3	Spurious Emissions			
	f ≤ 2.2 GHz	±1.5 dB (95 %)	±0.36 dB (95 %)	
	2.2 GHz < f ≤ 4 GHz	±2.0 dB (95 %)	±1.17 dB (95 %)	
6.7.1	4 GHz < f	±4.0 dB (95 %)	±1.54 dB (95 %)	
	EVM (Modulation Accuracy)	±2.5 % (95 %)	±0.5 % (100 %)	EVM in the range of 12.5 % to 22.5 %
	Peak Code Domain Error (Modulation accuracy)	±1.0 dB (95 %)	±1.0 dB (100 %)	
6.7.3	Time alignment error in Tx Diversity (Modulation Accuracy)	±26 ns (95 %) [= 0.1 Tc]	±5 ns (100 %)	

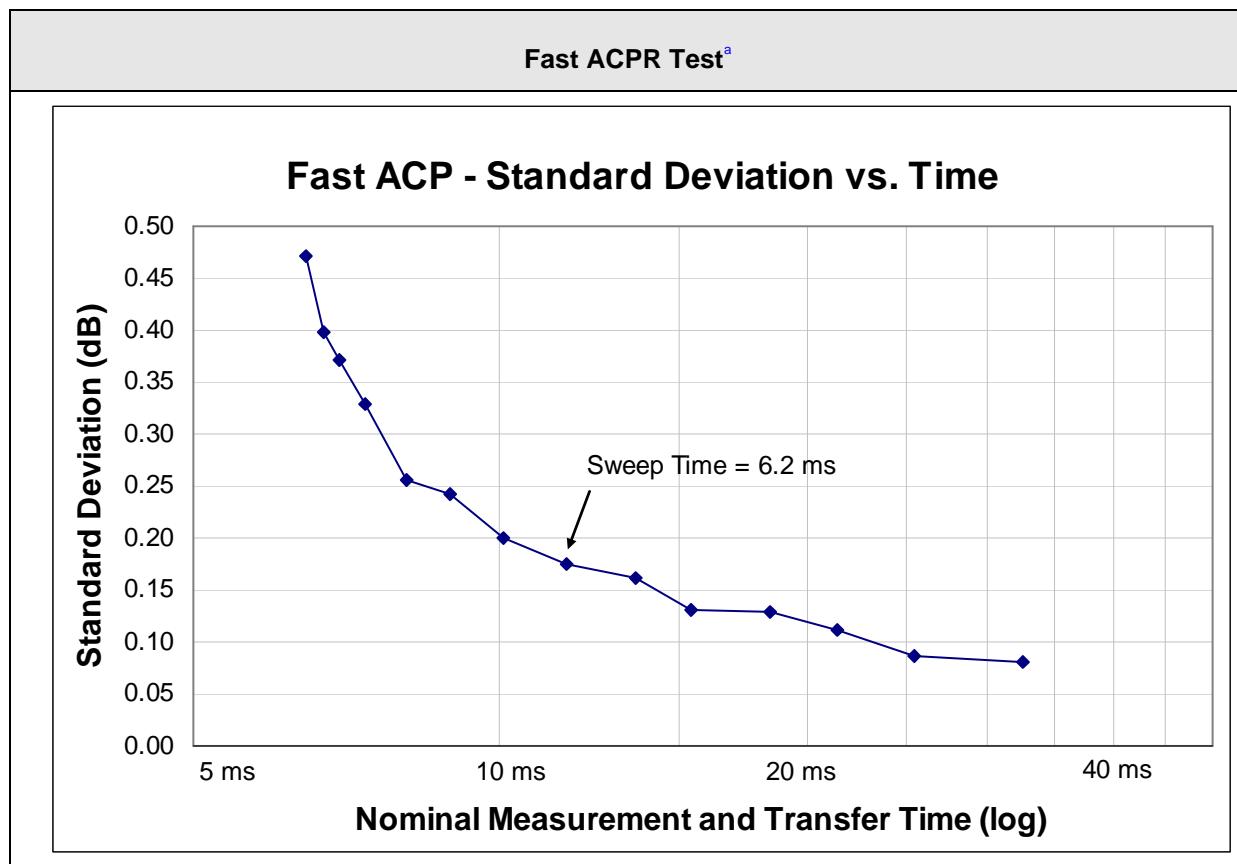
a. Those tolerances marked as 95 % are derived from 95th percentile observations with 95 % confidence.

- b. Those tolerances marked as 100 % are derived from 100 % limit tested observations. Only the 100 % limit tested observations are covered by the product warranty.
- c. The computation of the instrument tolerance intervals shown includes the uncertainty of the tracing of calibration references to national standards. It is added, in a root-sum-square fashion, to the observed performance of the instrument.
- d. These measurements are obtained by utilizing the code domain power function or general instrument capability. The tolerance limits given represent instrument capabilities.
- e. The tolerance interval shown is for the peak absolute power of a CW-like spurious signal. The standards for SEM measurements are ambiguous as of this writing; the tolerance interval shown is based on Agilent's interpretation of the current standards and is subject to change.

Amplitude

Description	Specifications	Supplemental Information
Channel Power Minimum power at RF Input Absolute power accuracy ^a 20 to 30 °C Atten = 10 dB 95 % Confidence Absolute power accuracy 20 to 30 °C Atten = 10 dB Measurement floor	±0.80 dB	–50 dBm (nominal) ±0.30 dB –83.8 dBm (nominal)

a. Absolute power accuracy includes all error sources for in-band signals except mismatch errors and repeatability due to incomplete averaging. It applies when the mixer level is high enough that measurement floor contribution is negligible.


Description		Specifications		Supplemental Information	
Adjacent Channel Power (ACPR; ACLR)				1.1.1.1.1.1.1.1	
Single Carrier				-36 dBm (nominal)	
Minimum power at RF Input				RRC weighted, 3.84 MHz noise bandwidth, method = IBW or Fast ^b	
ACPR Accuracy ^a				At ACPR range of -30 to -36 dBc with optimum mixer level ^c	
Radio	Offset Freq			At ACPR range of -40 to -46 dBc with optimum mixer level ^d	
MS (UE)	5 MHz	±0.14 dB		At ACPR range of -42 to -48 dBc with optimum mixer level ^e	
MS (UE)	10 MHz	±0.21 dB		At ACPR range of -47 to -53 dBc with optimum mixer level ^f	
BTS	5 MHz	±0.49 dB		At -48 dBc non-coherent ACPR ^g	
BTS	10 MHz	±0.44 dB		RRC weighted, 3.84 MHz noise bandwidth	
BTS	5 MHz	±0.21 dB		Dynamic Range (typical) ^f	
Dynamic Range		Method		Optimum ML (nominal)	
Noise Correction	Offset Freq	Method			
off	5 MHz	IBW		-73 dB	-8 dBm
off	5 MHz	Fast		-72 dB	-9 dBm
off	10 MHz	IBW		-79 dB	-2 dBm
on	5 MHz	IBW		-78 dB	-8 dBm
on	10 MHz	IBW		-82 dB	-2 dBm
RRC Weighting Accuracy ^g					
White noise in Adjacent Channel		0.00 dB (nominal)			
TOI-induced spectrum		0.001 dB (nominal)			
rms CW error		0.012 dB (nominal)			
Multiple Carriers		RRC weighted, 3.84 MHz noise bandwidth. All specifications apply for 5 MHz offset.			
Two Carriers					
ACPR Dynamic Range		-70 dB (nominal)			
ACPR Accuracy		±0.42 dB (nominal)			
Four Carriers		Dynamic range (nominal)		Optimum ML (nominal)	
ACPR Dynamic Range					
Noise Correction (NC) off		-64 dB		-18 dBm	
Noise Correction (NC) on		-72 dB		-21 dBm	

ACPR Accuracy, BTS, Incoherent TOI ^{dh}		UUT ACPR Range	Optimum ML ⁱ (nominal)
Noise Correction (NC) off	±0.39 dB	-42 to -48 dB	-18 dBm
Noise Correction (NC) on	±0.15 dB	-42 to -48 dB	-21 dBm

- a. The accuracy of the Adjacent Channel Power Ratio will depend on the mixer drive level and whether the distortion products from the analyzer are coherent with those in the UUT. These specifications apply even in the worst case condition of coherent analyzer and UUT distortion products. For ACPR levels other than those in this specifications table, the optimum mixer drive level for accuracy is approximately -37 dBm - (ACPR/3), where the ACPR is given in (negative) decibels.
- b. The Fast method has a slight decrease in accuracy in only one case: for BTS measurements at 5 MHz offset, the accuracy degrades by ±0.01 dB relative to the accuracy shown in this table.
- c. To meet this specified accuracy when measuring mobile station (MS) or user equipment (UE) within 3 dB of the required -33 dBc ACPR, the mixer level (ML) must be optimized for accuracy. This optimum mixer level is -22 dBm, so the input attenuation must be set as close as possible to the average input power - (-22 dBm). For example, if the average input power is -6 dBm, set the attenuation to 16 dB. This specification applies for the normal 3.5 dB peak-to-average ratio of a single code. Note that if the mixer level is set to optimize dynamic range instead of accuracy, accuracy errors are nominally doubled.
- d. ACPR accuracy at 10 MHz offset is warranted when the input attenuator is set to give an average mixer level of -14 dBm.
- e. In order to meet this specified accuracy, the mixer level must be optimized for accuracy when measuring node B Base Transmission Station (BTS) within 3 dB of the required -45 dBc ACPR. This optimum mixer level is -19 dBm, so the input attenuation must be set as close as possible to the average input power - (-19 dBm). For example, if the average input power is -5 dBm, set the attenuation to 14 dB. This specification applies for the normal 10 dB peak-to-average ratio (at 0.01 % probability) for Test Model 1. Note that, if the mixer level is set to optimize dynamic range instead of accuracy, accuracy errors are nominally doubled.
- f. Agilent measures 100 % of Agilent MXA Signal Analyzers for dynamic range in the factory production process. This measurement requires a near-ideal signal, which is impractical for field and customer use. Because field verification is impractical, Agilent only gives a typical result. More than 80 % of prototype instruments met this "typical" specification; the factory test line limit is set commensurate with an on-going 80 % yield to this typical. The ACPR dynamic range is verified only at 2 GHz, where Agilent has the near-perfect signal available. The dynamic range is specified for the optimum mixer drive level, which is different in different instruments and different conditions. The test signal is a 1 DPCCH signal.
The ACPR dynamic range is the observed range. This typical specification includes no measurement uncertainty.
- g. 3GPP requires the use of a root-raised-cosine filter in evaluating the ACLR of a device. The accuracy of the passband shape of the filter is not specified in standards, nor is any method of evaluating that accuracy. This footnote discusses the performance of the filter in this instrument. The effect of the RRC filter and the effect of the RBW used in the measurement interact. The analyzer compensates the shape of the RRC filter to accommodate the RBW filter. The effectiveness of this compensation is summarized in three ways:
 - White noise in Adj Ch: The compensated RRC filter nominally has no errors if the adjacent channel has a spectrum that is flat across its width.
 - TOI-induced spectrum: If the spectrum is due to third-order intermodulation, it has a distinctive shape. The computed errors of the compensated filter are -0.004 dB for the 470 kHz RBW used for UE testing with the IBW method and also used for all testing with the Fast method, and 0.000 dB for the 30 kHz RBW filter used for BTS testing with the IBW method. The worst error for RBWs between these extremes is 0.05 dB for a 330 kHz RBW filter.
 - rms CW error: This error is a measure of the error in measuring a CW-like spurious component. It is evaluated by computing the root of the mean of the square of the power error across all frequencies within the adjacent channel. The computed rms error of the compensated filter is 0.023 dB for the 470 kHz RBW used for UE testing with the IBW method and also used for all testing with the Fast method, and 0.000 dB for the 30 kHz RBW filter used for BTS testing. The worst error for RBWs between these extremes is 0.057 dB for a 430 kHz RBW filter.
- h. Incoherent TOI means that the specified accuracy only applies when the distortions of the device under test are not coherent with the third-order distortion of the analyzer. Incoherence is often the case with advanced multicarrier amplifiers built with compensations and predistortions that mostly eliminate coherent third-order affects in the amplifier.

- i. Optimum mixer level (MLOpt). The mixer level is given by the average power of the sum of the four carriers minus the input attenuation.

a. Observation conditions for ACP speed:
Display Off, signal is Test Model 1 with 64 DPCH, Method set to Fast. Measured with an IBM compatible PC with a 3 GHz Pentium 4 running Windows XP Professional Version 2002. The communications medium was PCI GPIB IEEE 488.2. The Test Application Language was .NET – C#. The Application Communication Layer was Agilent T&M Programmer's Toolkit For Visual Studio (Version 1.1), Agilent I/O Libraries (Version M.01.01.41_beta).

Description	Specifications	Supplemental Information
Power Statistics CCDF Histogram Resolution	0.01 dB ^a	

a. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of the histogram of the power envelope. The width of the amplitude bins used by the histogram is the histogram resolution. The resolution of the CCDF will be the same as the width of those bins.

Description	Specifications	Supplemental Information
Occupied Bandwidth Minimum power at RF Input Frequency Accuracy	±10 kHz	–30 dBm (nominal) RBW = 30 kHz, Number of Points = 1001, span = 10 MHz

Description	Specifications	Supplemental Information
Spectrum Emission Mask Dynamic Range, relative 2.515 MHz offset ^{ab} Sensitivity, absolute 2.515 MHz offset ^c Accuracy 2.515 MHz offset Relative ^d Absolute ^e 20 – 30 °C	81.9 dB –99.7 dBm ±0.12 dB ±0.86 dB	88.2 dB (typical) –104.7 dBm (typical) ±0.34 dB (95 % confidence)

a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 30 kHz RBW.

b. This dynamic range specification applies for the optimum mixer level, which is about –16 dBm. Mixer level is defined to be the average input power minus the input attenuation.

c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is tested without an input signal. The sensitivity at this offset is specified in the default 30 kHz RBW, at a center frequency of 2 GHz.

d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for spectrum emission levels in the offsets that are well above the dynamic range limitation.

e. The absolute accuracy of SEM measurement is the same as the absolute accuracy of the spectrum analyzer. See YY on page XX for more information. The numbers shown are for 0 – 3.6 GHz, with attenuation set to 10 dB.

Description	Specifications	Supplemental Information
Spurious Emissions Dynamic Range, relative Sensitivity, absolute Accuracy Attenuation = 10dB Frequency Range 20 Hz to 3.6 GHz 3.5 GHz to 8.4 GHz 8.3 GHz to 13.6 GHz	95.3 dB –84.4 dBm	Table-driven spurious signals; search across regions 100.3 dB (typical) –89.4 dBm (typical) ±0.36 dB (95 % Confidence) ±1.17 dB (95 % Confidence) ±1.54 dB (95 % Confidence)

Description	Specifications	Supplemental Information
Code Domain BTS Measurements $-25 \text{ dBm} \leq \text{ML}^a \leq -15 \text{ dBm}$ 20 to 30 °C		RF input power range is accordingly determined to meet Mixer level.
Code domain power Absolute accuracy -10 dBc CPICH (Atten = 10 dB) ^b		$\pm 0.32 \text{ dB}$ (95 % confidence)
Relative accuracy Code domain power range 0 to -10 dBc -10 to -30 dBc -30 to -40 dBc	$\pm 0.015 \text{ dB}$ $\pm 0.06 \text{ dB}$ $\pm 0.07 \text{ dB}$	
Power Control Steps Accuracy 0 to -10 dBc -10 to -30 dBc	$\pm 0.03 \text{ dB}$ $\pm 0.12 \text{ dB}$	
Power Dynamic Range Accuracy 0 to -40 dBc	$\pm 0.14 \text{ dB}$	
Symbol power vs. time Relative accuracy Code domain power range 0 to -10 dBc -10 to -30 dBc -30 to -40 dBc	$\pm 0.015 \text{ dB}$ $\pm 0.06 \text{ dB}$ $\pm 0.07 \text{ dB}$	
Symbol error vector magnitude Accuracy 0 to -25 dBc		$\pm 1.0 \%$ (nominal)

a. ML (mixer level) is RF input power minus attenuation.

b. Code Domain Power Absolute accuracy is calculated as sum of 95% Confidence Absolute Amplitude Accuracy and Code Domain relative accuracy at Code Power level.

Description	Specifications	Supplemental Information
QPSK EVM $-25 \text{ dBm} \leq \text{ML}^a \leq -15 \text{ dBm}$ 20 to 30 °C EVM Range 0 to 25 % Floor 1.5 % Accuracy ^b ±1.0 % I/Q origin offset DUT Maximum Offset -10 dBc (nominal) Analyzer Noise Floor -50 dBc (nominal) Frequency error Range ±30 kHz (nominal) ^c Accuracy ±5 Hz + tfa ^d		RF input power range is accordingly determined to meet Mixer level.

- a. ML (mixer level) is RF input power minus attenuation.
- b. The accuracy specification applies when the EVM to be measured is well above the measurement floor. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM. The errors depend on the EVM of the UUT and the floor as follows: error = $\sqrt{(\text{EVM}_{\text{UUT}})^2 + (\text{EVM}_{\text{sa}})^2} - \text{EVM}_{\text{UUT}}$, where EVM_{UUT} is the EVM of the UUT in percent, and EVM_{sa} is the EVM floor of the analyzer in percent.
- c. This specifies a synchronization range with CPICH for CPICH only signal.
- d. tfa = transmitter frequency × frequency reference accuracy

Description	Specifications	Supplemental Information
Modulation Accuracy (Composite EVM) BTS Measurements		
-25 dBm \leq ML ^a \leq -15 dBm 20 to 30 °C		
Composite EVM		RF input power range is accordingly determined to meet Mixer level.
Range	0 to 25 %	
Floor	1.5 %	
Accuracy	\pm 1.0 % ^b	
	\pm 0.5 %	at EVM measurement in the range of 12.5% to 22.5%
Peak Code Domain Error		
Accuracy	\pm 1.0 dB	
I/Q Origin Offset		
DUT Maximum Offset		-10 dBc (nominal)
Analyzer Noise Floor		-50 dBc (nominal)
Frequency Error		
Range		\pm 3 kHz (nominal) ^c
Accuracy	\pm 5 Hz + tfa ^d	
Time offset		
Relative frame offset accuracy		\pm 5.0 ns (nominal)
Relative offset accuracy (for STTD diff mode) ^e	\pm 1.25 ns	

- a. ML (mixer level) is RF input power minus attenuation.
- b. The accuracy specification applies when the EVM to be measured is well above the measurement floor. When the EVM does not greatly exceed the floor, the errors due to the floor add to the accuracy errors. The errors due to the floor are noise-like and add incoherently with the UUT EVM. The errors depend on the EVM of the UUT and the floor as follows: error = $\sqrt{(\text{EVM}_{\text{UUT}})^2 + (\text{EVM}_{\text{sa}})^2}$ - EVM_{UUT} , where EVM_{UUT} is the EVM of the UUT in percent, and EVM_{sa} is the EVM floor of the analyzer in percent. For example, if the EVM of the UUT is 7 %, and the floor is 2.5 %, the error due to the floor is 0.43 %.
- c. This specifies a synchronization range with CPICH for CPICH only signal.
- d. tfa = transmitter frequency \times frequency reference accuracy
- e. The accuracy specification applies when the measured signal is the combination of CPICH (antenna-1) and CPICH (antenna-2), and where the power level of each CPICH is -3 dB relative to the total power of the combined signal. Further, the range of the measurement for the accuracy specification to apply is \pm 0.5 chips.

Description	Specifications	Supplemental Information
Power Control		
Absolute power measurement		Using 5 MHz resolution bandwidth
Accuracy		
0 to -20 dBm		± 0.7 dB (nominal)
-20 to -60 dBm		± 1.0 dB (nominal)
Relative power measurement		
Accuracy		
Step range ± 1.5 dB		± 0.1 dB (nominal)
Step range ± 3.0 dB		± 0.15 dB (nominal)
Step range ± 4.5 dB		± 0.2 dB (nominal)
Step range ± 26.0 dB		± 0.3 dB (nominal)

Frequency

Description	Specifications	Supplemental Information																														
In-Band Frequency Range	<table border="1"> <thead> <tr> <th data-bbox="507 994 638 1058">Operating Band</th> <th data-bbox="703 994 899 1058">UL Frequencies UE transmit, Node B receive</th> <th data-bbox="964 994 1192 1058">DL Frequencies UE receive, Node B transmit</th> </tr> </thead> <tbody> <tr> <td data-bbox="556 1079 589 1100">I</td><td data-bbox="670 1079 882 1100">1920 – 1980 MHz</td><td data-bbox="948 1079 1160 1100">2110 – 2170 MHz</td></tr> <tr> <td data-bbox="556 1121 589 1142">II</td><td data-bbox="670 1121 882 1142">1850 – 1910 MHz</td><td data-bbox="948 1121 1160 1142">1930 – 1990 MHz</td></tr> <tr> <td data-bbox="556 1163 589 1184">III</td><td data-bbox="670 1163 882 1184">1710 – 1785 MHz</td><td data-bbox="948 1163 1160 1184">1805 – 1880 MHz</td></tr> <tr> <td data-bbox="556 1205 589 1227">IV</td><td data-bbox="670 1205 882 1227">1710 – 1755 MHz</td><td data-bbox="948 1205 1160 1227">2110 – 2155 MHz</td></tr> <tr> <td data-bbox="556 1248 589 1269">V</td><td data-bbox="670 1248 882 1269">824 – 849 MHz</td><td data-bbox="948 1248 1160 1269">869 – 894 MHz</td></tr> <tr> <td data-bbox="556 1290 589 1311">VI</td><td data-bbox="670 1290 882 1311">830 – 840 MHz</td><td data-bbox="948 1290 1160 1311">875 – 885 MHz</td></tr> <tr> <td data-bbox="556 1332 589 1353">VII</td><td data-bbox="670 1332 882 1353">2500 – 2570 MHz</td><td data-bbox="948 1332 1160 1353">2620 – 2690 MHz</td></tr> <tr> <td data-bbox="556 1374 589 1396">VIII</td><td data-bbox="670 1374 882 1396">880 – 915 MHz</td><td data-bbox="948 1374 1160 1396">925 – 960 MHz</td></tr> <tr> <td data-bbox="556 1417 589 1438">IX</td><td data-bbox="670 1417 882 1514">1749.9 – 1784.9 MHz</td><td data-bbox="948 1417 1160 1514">1844.9 – 1879.9 MHz</td></tr> </tbody> </table>	Operating Band	UL Frequencies UE transmit, Node B receive	DL Frequencies UE receive, Node B transmit	I	1920 – 1980 MHz	2110 – 2170 MHz	II	1850 – 1910 MHz	1930 – 1990 MHz	III	1710 – 1785 MHz	1805 – 1880 MHz	IV	1710 – 1755 MHz	2110 – 2155 MHz	V	824 – 849 MHz	869 – 894 MHz	VI	830 – 840 MHz	875 – 885 MHz	VII	2500 – 2570 MHz	2620 – 2690 MHz	VIII	880 – 915 MHz	925 – 960 MHz	IX	1749.9 – 1784.9 MHz	1844.9 – 1879.9 MHz	
Operating Band	UL Frequencies UE transmit, Node B receive	DL Frequencies UE receive, Node B transmit																														
I	1920 – 1980 MHz	2110 – 2170 MHz																														
II	1850 – 1910 MHz	1930 – 1990 MHz																														
III	1710 – 1785 MHz	1805 – 1880 MHz																														
IV	1710 – 1755 MHz	2110 – 2155 MHz																														
V	824 – 849 MHz	869 – 894 MHz																														
VI	830 – 840 MHz	875 – 885 MHz																														
VII	2500 – 2570 MHz	2620 – 2690 MHz																														
VIII	880 – 915 MHz	925 – 960 MHz																														
IX	1749.9 – 1784.9 MHz	1844.9 – 1879.9 MHz																														